Normalized defining polynomial
\( x^{32} - 64 x^{30} + 1856 x^{28} - 32256 x^{26} + 374400 x^{24} - 3061760 x^{22} + 18135040 x^{20} - 78757888 x^{18} + 251040319 x^{16} - 582109152 x^{14} + 962963040 x^{12} - 1099478272 x^{10} + 820815552 x^{8} - 364686336 x^{6} + 79473664 x^{4} - 4710400 x^{2} + 37249 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486797299958529611528622959063550881784243829894751113445376=2^{128}\cdot 3^{16}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(253,·)$, $\chi_{672}(1,·)$, $\chi_{672}(643,·)$, $\chi_{672}(391,·)$, $\chi_{672}(139,·)$, $\chi_{672}(659,·)$, $\chi_{672}(407,·)$, $\chi_{672}(155,·)$, $\chi_{672}(545,·)$, $\chi_{672}(293,·)$, $\chi_{672}(41,·)$, $\chi_{672}(559,·)$, $\chi_{672}(307,·)$, $\chi_{672}(55,·)$, $\chi_{672}(575,·)$, $\chi_{672}(323,·)$, $\chi_{672}(71,·)$, $\chi_{672}(461,·)$, $\chi_{672}(589,·)$, $\chi_{672}(337,·)$, $\chi_{672}(85,·)$, $\chi_{672}(377,·)$, $\chi_{672}(475,·)$, $\chi_{672}(223,·)$, $\chi_{672}(209,·)$, $\chi_{672}(421,·)$, $\chi_{672}(491,·)$, $\chi_{672}(239,·)$, $\chi_{672}(629,·)$, $\chi_{672}(169,·)$, $\chi_{672}(505,·)$, $\chi_{672}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{93} a^{16} - \frac{32}{93} a^{14} + \frac{44}{93} a^{12} - \frac{26}{93} a^{10} - \frac{14}{31} a^{8} - \frac{7}{31} a^{6} + \frac{7}{31} a^{4} - \frac{8}{93} a^{2} - \frac{38}{93}$, $\frac{1}{93} a^{17} - \frac{32}{93} a^{15} + \frac{44}{93} a^{13} - \frac{26}{93} a^{11} - \frac{14}{31} a^{9} - \frac{7}{31} a^{7} + \frac{7}{31} a^{5} - \frac{8}{93} a^{3} - \frac{38}{93} a$, $\frac{1}{93} a^{18} + \frac{43}{93} a^{14} - \frac{13}{93} a^{12} - \frac{37}{93} a^{10} + \frac{10}{31} a^{8} + \frac{13}{93} a^{4} - \frac{5}{31} a^{2} - \frac{7}{93}$, $\frac{1}{93} a^{19} + \frac{43}{93} a^{15} - \frac{13}{93} a^{13} - \frac{37}{93} a^{11} + \frac{10}{31} a^{9} + \frac{13}{93} a^{5} - \frac{5}{31} a^{3} - \frac{7}{93} a$, $\frac{1}{93} a^{20} - \frac{32}{93} a^{14} + \frac{8}{31} a^{12} + \frac{32}{93} a^{10} + \frac{13}{31} a^{8} - \frac{14}{93} a^{6} + \frac{4}{31} a^{4} - \frac{35}{93} a^{2} - \frac{40}{93}$, $\frac{1}{93} a^{21} - \frac{32}{93} a^{15} + \frac{8}{31} a^{13} + \frac{32}{93} a^{11} + \frac{13}{31} a^{9} - \frac{14}{93} a^{7} + \frac{4}{31} a^{5} - \frac{35}{93} a^{3} - \frac{40}{93} a$, $\frac{1}{93} a^{22} + \frac{23}{93} a^{14} + \frac{15}{31} a^{12} + \frac{44}{93} a^{10} + \frac{37}{93} a^{8} - \frac{3}{31} a^{6} - \frac{14}{93} a^{4} - \frac{17}{93} a^{2} - \frac{7}{93}$, $\frac{1}{93} a^{23} + \frac{23}{93} a^{15} + \frac{15}{31} a^{13} + \frac{44}{93} a^{11} + \frac{37}{93} a^{9} - \frac{3}{31} a^{7} - \frac{14}{93} a^{5} - \frac{17}{93} a^{3} - \frac{7}{93} a$, $\frac{1}{65565} a^{24} - \frac{16}{21855} a^{22} + \frac{101}{21855} a^{20} - \frac{35}{13113} a^{18} - \frac{4}{7285} a^{16} + \frac{9943}{21855} a^{14} + \frac{4928}{65565} a^{12} + \frac{4249}{21855} a^{10} - \frac{438}{1457} a^{8} + \frac{6529}{65565} a^{6} - \frac{3182}{21855} a^{4} - \frac{1954}{21855} a^{2} - \frac{9433}{65565}$, $\frac{1}{12654045} a^{25} - \frac{7447}{1406005} a^{23} - \frac{5293}{1406005} a^{21} + \frac{1657}{2530809} a^{19} + \frac{2581}{1406005} a^{17} - \frac{2086022}{4218015} a^{15} + \frac{5146493}{12654045} a^{13} + \frac{761654}{4218015} a^{11} + \frac{276926}{843603} a^{9} - \frac{2092961}{12654045} a^{7} - \frac{994177}{4218015} a^{5} + \frac{2034556}{4218015} a^{3} + \frac{5302037}{12654045} a$, $\frac{1}{12654045} a^{26} - \frac{52}{12654045} a^{24} + \frac{221}{843603} a^{22} + \frac{26813}{12654045} a^{20} + \frac{4894}{12654045} a^{18} + \frac{13046}{4218015} a^{16} + \frac{2805017}{12654045} a^{14} - \frac{806926}{2530809} a^{12} - \frac{971321}{4218015} a^{10} + \frac{5358769}{12654045} a^{8} - \frac{320482}{12654045} a^{6} - \frac{1708486}{4218015} a^{4} - \frac{23966}{81639} a^{2} - \frac{17561}{65565}$, $\frac{1}{12654045} a^{27} + \frac{6201}{1406005} a^{23} - \frac{1141}{12654045} a^{21} + \frac{9173}{4218015} a^{19} + \frac{7487}{4218015} a^{17} + \frac{1142086}{2530809} a^{15} + \frac{915467}{4218015} a^{13} + \frac{1534297}{4218015} a^{11} + \frac{6106219}{12654045} a^{9} + \frac{760927}{4218015} a^{7} + \frac{83139}{281201} a^{5} - \frac{196024}{408195} a^{3} - \frac{387456}{1406005} a$, $\frac{1}{12654045} a^{28} + \frac{32}{12654045} a^{24} - \frac{9029}{2530809} a^{22} - \frac{284}{4218015} a^{20} - \frac{13244}{12654045} a^{18} - \frac{37303}{12654045} a^{16} + \frac{1878151}{4218015} a^{14} + \frac{155063}{2530809} a^{12} + \frac{204404}{2530809} a^{10} - \frac{1611043}{4218015} a^{8} - \frac{4344673}{12654045} a^{6} - \frac{4146937}{12654045} a^{4} + \frac{19279}{281201} a^{2} + \frac{30217}{65565}$, $\frac{1}{12654045} a^{29} + \frac{58616}{12654045} a^{23} + \frac{8939}{4218015} a^{21} - \frac{2078}{4218015} a^{19} + \frac{35759}{12654045} a^{17} + \frac{174097}{843603} a^{15} - \frac{2071042}{4218015} a^{13} - \frac{662639}{12654045} a^{11} + \frac{658559}{1406005} a^{9} - \frac{418849}{1406005} a^{7} - \frac{790289}{2530809} a^{5} - \frac{1364962}{4218015} a^{3} + \frac{1311614}{4218015} a$, $\frac{1}{12654045} a^{30} - \frac{56}{12654045} a^{24} - \frac{1588}{1406005} a^{22} + \frac{2711}{843603} a^{20} - \frac{12527}{4218015} a^{18} - \frac{4292}{1406005} a^{16} - \frac{228241}{1406005} a^{14} - \frac{485795}{2530809} a^{12} - \frac{1996456}{4218015} a^{10} - \frac{55044}{1406005} a^{8} - \frac{4678283}{12654045} a^{6} + \frac{668144}{1406005} a^{4} + \frac{417969}{1406005} a^{2} - \frac{308}{65565}$, $\frac{1}{12654045} a^{31} + \frac{2816}{843603} a^{23} - \frac{13924}{4218015} a^{21} + \frac{18184}{12654045} a^{19} + \frac{4179}{1406005} a^{17} + \frac{202132}{843603} a^{15} + \frac{276367}{1406005} a^{13} + \frac{562348}{4218015} a^{11} - \frac{635464}{1406005} a^{9} - \frac{715633}{4218015} a^{7} + \frac{51523}{843603} a^{5} + \frac{1257283}{4218015} a^{3} + \frac{1049318}{12654045} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51823553187063560000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |