Normalized defining polynomial
\( x^{32} - 60 x^{30} + 1499 x^{28} - 20332 x^{26} + 164371 x^{24} - 824692 x^{22} + 2624266 x^{20} - 5396088 x^{18} + 7298927 x^{16} - 6560964 x^{14} + 3912050 x^{12} - 1521784 x^{10} + 372978 x^{8} - 54264 x^{6} + 4236 x^{4} - 144 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22512804325029881197071829100162696243017892592340199408664576=2^{64}\cdot 3^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(408=2^{3}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{408}(1,·)$, $\chi_{408}(263,·)$, $\chi_{408}(395,·)$, $\chi_{408}(13,·)$, $\chi_{408}(145,·)$, $\chi_{408}(407,·)$, $\chi_{408}(25,·)$, $\chi_{408}(155,·)$, $\chi_{408}(157,·)$, $\chi_{408}(287,·)$, $\chi_{408}(35,·)$, $\chi_{408}(169,·)$, $\chi_{408}(47,·)$, $\chi_{408}(49,·)$, $\chi_{408}(179,·)$, $\chi_{408}(59,·)$, $\chi_{408}(191,·)$, $\chi_{408}(325,·)$, $\chi_{408}(203,·)$, $\chi_{408}(205,·)$, $\chi_{408}(83,·)$, $\chi_{408}(217,·)$, $\chi_{408}(349,·)$, $\chi_{408}(229,·)$, $\chi_{408}(359,·)$, $\chi_{408}(361,·)$, $\chi_{408}(239,·)$, $\chi_{408}(373,·)$, $\chi_{408}(121,·)$, $\chi_{408}(251,·)$, $\chi_{408}(253,·)$, $\chi_{408}(383,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{1376989282023370048884303555857} a^{30} + \frac{234308147599352788948111778700}{1376989282023370048884303555857} a^{28} - \frac{528948077814056637462407446949}{1376989282023370048884303555857} a^{26} + \frac{619080091695451069396916607759}{1376989282023370048884303555857} a^{24} + \frac{162978238519651622995282499058}{1376989282023370048884303555857} a^{22} - \frac{120034759521937455913202374570}{1376989282023370048884303555857} a^{20} - \frac{463107010894690891078547606111}{1376989282023370048884303555857} a^{18} + \frac{511031766377964467000886590469}{1376989282023370048884303555857} a^{16} - \frac{434213372932914990026551014778}{1376989282023370048884303555857} a^{14} + \frac{3840578907015763896534067424}{1376989282023370048884303555857} a^{12} - \frac{488499709502116080154665060205}{1376989282023370048884303555857} a^{10} + \frac{285271297827859953648546334486}{1376989282023370048884303555857} a^{8} + \frac{611021969852724458666044782726}{1376989282023370048884303555857} a^{6} - \frac{214906973432998705173058126004}{1376989282023370048884303555857} a^{4} + \frac{544146818797505086776552574478}{1376989282023370048884303555857} a^{2} - \frac{368178916027983813859465303707}{1376989282023370048884303555857}$, $\frac{1}{1376989282023370048884303555857} a^{31} + \frac{234308147599352788948111778700}{1376989282023370048884303555857} a^{29} - \frac{528948077814056637462407446949}{1376989282023370048884303555857} a^{27} + \frac{619080091695451069396916607759}{1376989282023370048884303555857} a^{25} + \frac{162978238519651622995282499058}{1376989282023370048884303555857} a^{23} - \frac{120034759521937455913202374570}{1376989282023370048884303555857} a^{21} - \frac{463107010894690891078547606111}{1376989282023370048884303555857} a^{19} + \frac{511031766377964467000886590469}{1376989282023370048884303555857} a^{17} - \frac{434213372932914990026551014778}{1376989282023370048884303555857} a^{15} + \frac{3840578907015763896534067424}{1376989282023370048884303555857} a^{13} - \frac{488499709502116080154665060205}{1376989282023370048884303555857} a^{11} + \frac{285271297827859953648546334486}{1376989282023370048884303555857} a^{9} + \frac{611021969852724458666044782726}{1376989282023370048884303555857} a^{7} - \frac{214906973432998705173058126004}{1376989282023370048884303555857} a^{5} + \frac{544146818797505086776552574478}{1376989282023370048884303555857} a^{3} - \frac{368178916027983813859465303707}{1376989282023370048884303555857} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151446630849813740000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||