Normalized defining polynomial
\( x^{32} - 48 x^{30} + 984 x^{28} - 11328 x^{26} + 81260 x^{24} - 382560 x^{22} + 1217920 x^{20} - 2670144 x^{18} + 4065711 x^{16} - 4291632 x^{14} + 3096208 x^{12} - 1480992 x^{10} + 444972 x^{8} - 76608 x^{6} + 6448 x^{4} - 192 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2235113542185251937084439154754616201052160000000000000000=2^{128}\cdot 3^{16}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(131,·)$, $\chi_{480}(11,·)$, $\chi_{480}(409,·)$, $\chi_{480}(289,·)$, $\chi_{480}(419,·)$, $\chi_{480}(421,·)$, $\chi_{480}(169,·)$, $\chi_{480}(299,·)$, $\chi_{480}(301,·)$, $\chi_{480}(431,·)$, $\chi_{480}(49,·)$, $\chi_{480}(179,·)$, $\chi_{480}(181,·)$, $\chi_{480}(311,·)$, $\chi_{480}(59,·)$, $\chi_{480}(61,·)$, $\chi_{480}(191,·)$, $\chi_{480}(71,·)$, $\chi_{480}(469,·)$, $\chi_{480}(349,·)$, $\chi_{480}(479,·)$, $\chi_{480}(229,·)$, $\chi_{480}(359,·)$, $\chi_{480}(361,·)$, $\chi_{480}(109,·)$, $\chi_{480}(239,·)$, $\chi_{480}(241,·)$, $\chi_{480}(371,·)$, $\chi_{480}(119,·)$, $\chi_{480}(121,·)$, $\chi_{480}(251,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{1673} a^{28} - \frac{794}{1673} a^{26} - \frac{249}{1673} a^{24} + \frac{592}{1673} a^{22} + \frac{523}{1673} a^{20} - \frac{327}{1673} a^{18} - \frac{482}{1673} a^{16} - \frac{115}{1673} a^{14} + \frac{551}{1673} a^{12} + \frac{780}{1673} a^{10} - \frac{347}{1673} a^{8} + \frac{682}{1673} a^{6} - \frac{650}{1673} a^{4} - \frac{22}{1673} a^{2} - \frac{715}{1673}$, $\frac{1}{1673} a^{29} - \frac{794}{1673} a^{27} - \frac{249}{1673} a^{25} + \frac{592}{1673} a^{23} + \frac{523}{1673} a^{21} - \frac{327}{1673} a^{19} - \frac{482}{1673} a^{17} - \frac{115}{1673} a^{15} + \frac{551}{1673} a^{13} + \frac{780}{1673} a^{11} - \frac{347}{1673} a^{9} + \frac{682}{1673} a^{7} - \frac{650}{1673} a^{5} - \frac{22}{1673} a^{3} - \frac{715}{1673} a$, $\frac{1}{2603865422009975213657} a^{30} - \frac{77134621399158226}{371980774572853601951} a^{28} - \frac{286896519610723328879}{2603865422009975213657} a^{26} - \frac{855272830412179663842}{2603865422009975213657} a^{24} + \frac{598787974659798822}{2603865422009975213657} a^{22} - \frac{945412268664705890276}{2603865422009975213657} a^{20} + \frac{113730929576276043290}{371980774572853601951} a^{18} + \frac{101009165082388218764}{371980774572853601951} a^{16} - \frac{516325861568756631613}{2603865422009975213657} a^{14} - \frac{807180828711678248852}{2603865422009975213657} a^{12} - \frac{693576601612000019125}{2603865422009975213657} a^{10} - \frac{586119388012063645007}{2603865422009975213657} a^{8} + \frac{666612365395146636049}{2603865422009975213657} a^{6} - \frac{1106487728528403480432}{2603865422009975213657} a^{4} - \frac{278365585780343254981}{2603865422009975213657} a^{2} + \frac{233025987588203983513}{2603865422009975213657}$, $\frac{1}{2603865422009975213657} a^{31} - \frac{77134621399158226}{371980774572853601951} a^{29} - \frac{286896519610723328879}{2603865422009975213657} a^{27} - \frac{855272830412179663842}{2603865422009975213657} a^{25} + \frac{598787974659798822}{2603865422009975213657} a^{23} - \frac{945412268664705890276}{2603865422009975213657} a^{21} + \frac{113730929576276043290}{371980774572853601951} a^{19} + \frac{101009165082388218764}{371980774572853601951} a^{17} - \frac{516325861568756631613}{2603865422009975213657} a^{15} - \frac{807180828711678248852}{2603865422009975213657} a^{13} - \frac{693576601612000019125}{2603865422009975213657} a^{11} - \frac{586119388012063645007}{2603865422009975213657} a^{9} + \frac{666612365395146636049}{2603865422009975213657} a^{7} - \frac{1106487728528403480432}{2603865422009975213657} a^{5} - \frac{278365585780343254981}{2603865422009975213657} a^{3} + \frac{233025987588203983513}{2603865422009975213657} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3365113553891366400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||