Normalized defining polynomial
\( x^{32} - 160 x^{30} + 11600 x^{28} - 504000 x^{26} + 14625000 x^{24} - 299000000 x^{22} + 4427500000 x^{20} - 48070000000 x^{18} + 383057812500 x^{16} - 2220625000000 x^{14} + 9185312500000 x^{12} - 26243750000000 x^{10} + 49207031250000 x^{8} - 55781250000000 x^{6} + 33203125000000 x^{4} - 7812500000000 x^{2} + 581850781250 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(187072209578355573530071658587684226515959365500928000000000000000000000000=2^{191}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(640=2^{7}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{640}(1,·)$, $\chi_{640}(387,·)$, $\chi_{640}(9,·)$, $\chi_{640}(523,·)$, $\chi_{640}(401,·)$, $\chi_{640}(147,·)$, $\chi_{640}(409,·)$, $\chi_{640}(283,·)$, $\chi_{640}(161,·)$, $\chi_{640}(547,·)$, $\chi_{640}(169,·)$, $\chi_{640}(43,·)$, $\chi_{640}(561,·)$, $\chi_{640}(307,·)$, $\chi_{640}(569,·)$, $\chi_{640}(443,·)$, $\chi_{640}(321,·)$, $\chi_{640}(67,·)$, $\chi_{640}(329,·)$, $\chi_{640}(203,·)$, $\chi_{640}(81,·)$, $\chi_{640}(467,·)$, $\chi_{640}(89,·)$, $\chi_{640}(603,·)$, $\chi_{640}(481,·)$, $\chi_{640}(227,·)$, $\chi_{640}(489,·)$, $\chi_{640}(363,·)$, $\chi_{640}(241,·)$, $\chi_{640}(627,·)$, $\chi_{640}(249,·)$, $\chi_{640}(123,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{119375} a^{16} - \frac{16}{23875} a^{14} - \frac{53}{23875} a^{12} - \frac{41}{4775} a^{10} + \frac{74}{4775} a^{8} + \frac{8}{955} a^{6} - \frac{4}{191} a^{4} + \frac{22}{191} a^{2} - \frac{87}{191}$, $\frac{1}{103020625} a^{17} - \frac{9324}{4120825} a^{15} + \frac{34327}{20604125} a^{13} - \frac{39769}{4120825} a^{11} - \frac{16352}{4120825} a^{9} + \frac{21973}{824165} a^{7} + \frac{76953}{824165} a^{5} + \frac{15684}{164833} a^{3} - \frac{58533}{164833} a$, $\frac{1}{103020625} a^{18} - \frac{18}{20604125} a^{16} - \frac{67507}{20604125} a^{14} - \frac{21067}{20604125} a^{12} - \frac{9448}{4120825} a^{10} + \frac{9028}{824165} a^{8} - \frac{36963}{824165} a^{6} + \frac{33544}{824165} a^{4} - \frac{42136}{164833} a^{2} + \frac{3}{191}$, $\frac{1}{103020625} a^{19} + \frac{22351}{20604125} a^{15} - \frac{63464}{20604125} a^{13} + \frac{37668}{4120825} a^{11} + \frac{56957}{4120825} a^{9} - \frac{37389}{824165} a^{7} + \frac{36328}{824165} a^{5} + \frac{50760}{164833} a^{3} + \frac{9275}{164833} a$, $\frac{1}{515103125} a^{20} - \frac{87}{103020625} a^{16} - \frac{49284}{20604125} a^{14} + \frac{73051}{20604125} a^{12} - \frac{24682}{4120825} a^{10} - \frac{49471}{4120825} a^{8} - \frac{40372}{824165} a^{6} + \frac{5021}{824165} a^{4} + \frac{2718}{164833} a^{2} - \frac{30}{191}$, $\frac{1}{515103125} a^{21} + \frac{15601}{20604125} a^{15} - \frac{72327}{20604125} a^{13} - \frac{23092}{4120825} a^{11} + \frac{11402}{4120825} a^{9} + \frac{58116}{824165} a^{7} - \frac{58221}{824165} a^{5} + \frac{48562}{164833} a^{3} - \frac{8438}{164833} a$, $\frac{1}{515103125} a^{22} + \frac{67}{20604125} a^{16} + \frac{16562}{20604125} a^{14} + \frac{45058}{20604125} a^{12} + \frac{12809}{824165} a^{10} - \frac{17511}{4120825} a^{8} - \frac{20249}{824165} a^{6} - \frac{16953}{824165} a^{4} - \frac{68848}{164833} a^{2} - \frac{1}{191}$, $\frac{1}{515103125} a^{23} - \frac{24873}{20604125} a^{15} - \frac{16202}{4120825} a^{13} + \frac{35187}{4120825} a^{11} + \frac{4184}{824165} a^{9} + \frac{36281}{824165} a^{7} - \frac{16452}{164833} a^{5} - \frac{48332}{164833} a^{3} - \frac{7435}{164833} a$, $\frac{1}{2575515625} a^{24} + \frac{154}{103020625} a^{16} + \frac{15573}{4120825} a^{14} + \frac{5484}{4120825} a^{12} - \frac{1317}{164833} a^{10} + \frac{75116}{4120825} a^{8} + \frac{18931}{824165} a^{6} - \frac{54373}{824165} a^{4} + \frac{54608}{164833} a^{2} - \frac{40}{191}$, $\frac{1}{2575515625} a^{25} + \frac{4693}{20604125} a^{15} + \frac{15718}{20604125} a^{13} - \frac{1464}{824165} a^{11} - \frac{44004}{4120825} a^{9} - \frac{68251}{824165} a^{7} - \frac{37159}{824165} a^{5} - \frac{53066}{164833} a^{3} + \frac{78580}{164833} a$, $\frac{1}{2575515625} a^{26} + \frac{164}{103020625} a^{16} + \frac{58868}{20604125} a^{14} + \frac{44522}{20604125} a^{12} - \frac{77661}{4120825} a^{10} + \frac{3092}{164833} a^{8} - \frac{58734}{824165} a^{6} + \frac{35857}{824165} a^{4} + \frac{60457}{164833} a^{2} + \frac{57}{191}$, $\frac{1}{2575515625} a^{27} - \frac{42603}{20604125} a^{15} + \frac{19216}{20604125} a^{13} + \frac{15968}{4120825} a^{11} - \frac{43133}{4120825} a^{9} - \frac{7196}{164833} a^{7} - \frac{57127}{824165} a^{5} - \frac{39224}{164833} a^{3} - \frac{76544}{164833} a$, $\frac{1}{12877578125} a^{28} - \frac{316}{103020625} a^{16} - \frac{3174}{824165} a^{14} - \frac{82414}{20604125} a^{12} - \frac{61097}{4120825} a^{10} - \frac{38569}{4120825} a^{8} - \frac{35762}{824165} a^{6} - \frac{60799}{824165} a^{4} + \frac{24907}{164833} a^{2} - \frac{61}{191}$, $\frac{1}{12877578125} a^{29} + \frac{948}{824165} a^{15} + \frac{50773}{20604125} a^{13} + \frac{12808}{824165} a^{11} + \frac{13771}{824165} a^{9} - \frac{16}{863} a^{7} + \frac{25898}{824165} a^{5} + \frac{36061}{164833} a^{3} + \frac{77058}{164833} a$, $\frac{1}{12877578125} a^{30} + \frac{269}{103020625} a^{16} - \frac{35527}{20604125} a^{14} - \frac{6877}{20604125} a^{12} - \frac{28664}{4120825} a^{10} + \frac{75488}{4120825} a^{8} + \frac{69048}{824165} a^{6} + \frac{14486}{164833} a^{4} - \frac{51529}{164833} a^{2} + \frac{77}{191}$, $\frac{1}{12877578125} a^{31} - \frac{4411}{4120825} a^{15} - \frac{10192}{20604125} a^{13} - \frac{44948}{4120825} a^{11} + \frac{4737}{824165} a^{9} - \frac{72534}{824165} a^{7} - \frac{23802}{824165} a^{5} + \frac{15133}{164833} a^{3} - \frac{12140}{164833} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1035918496783043300000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), 16.16.236118324143482260684800000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $32$ | R | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||