Normalized defining polynomial
\( x^{32} - x^{31} - 95 x^{30} - 37 x^{29} + 3924 x^{28} + 6404 x^{27} - 86885 x^{26} - 247839 x^{25} + 1027629 x^{24} + 4686255 x^{23} - 4671359 x^{22} - 48952218 x^{21} - 29135620 x^{20} + 277610329 x^{19} + 503619218 x^{18} - 666000824 x^{17} - 2706325012 x^{16} - 835566428 x^{15} + 6403713290 x^{14} + 8233352408 x^{13} - 3964294981 x^{12} - 15570255798 x^{11} - 7847282396 x^{10} + 8342709494 x^{9} + 10369480703 x^{8} + 994686632 x^{7} - 3490824231 x^{6} - 1377789078 x^{5} + 354398962 x^{4} + 243218618 x^{3} - 2768445 x^{2} - 9898412 x + 705613 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{61} a^{23} + \frac{15}{61} a^{22} - \frac{13}{61} a^{21} + \frac{26}{61} a^{20} - \frac{2}{61} a^{19} + \frac{24}{61} a^{17} + \frac{30}{61} a^{16} - \frac{8}{61} a^{15} + \frac{10}{61} a^{14} + \frac{5}{61} a^{13} + \frac{9}{61} a^{12} - \frac{1}{61} a^{11} + \frac{28}{61} a^{10} - \frac{28}{61} a^{9} + \frac{13}{61} a^{8} + \frac{19}{61} a^{7} + \frac{2}{61} a^{6} + \frac{15}{61} a^{5} + \frac{26}{61} a^{4} - \frac{13}{61} a^{3} - \frac{12}{61} a + \frac{6}{61}$, $\frac{1}{61} a^{24} + \frac{6}{61} a^{22} - \frac{23}{61} a^{21} - \frac{26}{61} a^{20} + \frac{30}{61} a^{19} + \frac{24}{61} a^{18} - \frac{25}{61} a^{17} + \frac{30}{61} a^{16} + \frac{8}{61} a^{15} - \frac{23}{61} a^{14} - \frac{5}{61} a^{13} - \frac{14}{61} a^{12} - \frac{18}{61} a^{11} - \frac{21}{61} a^{10} + \frac{6}{61} a^{9} + \frac{7}{61} a^{8} + \frac{22}{61} a^{7} - \frac{15}{61} a^{6} - \frac{16}{61} a^{5} + \frac{24}{61} a^{4} + \frac{12}{61} a^{3} - \frac{12}{61} a^{2} + \frac{3}{61} a - \frac{29}{61}$, $\frac{1}{61} a^{25} + \frac{9}{61} a^{22} - \frac{9}{61} a^{21} - \frac{4}{61} a^{20} - \frac{25}{61} a^{19} - \frac{25}{61} a^{18} + \frac{8}{61} a^{17} + \frac{11}{61} a^{16} + \frac{25}{61} a^{15} - \frac{4}{61} a^{14} + \frac{17}{61} a^{13} - \frac{11}{61} a^{12} - \frac{15}{61} a^{11} + \frac{21}{61} a^{10} - \frac{8}{61} a^{9} + \frac{5}{61} a^{8} - \frac{7}{61} a^{7} - \frac{28}{61} a^{6} - \frac{5}{61} a^{5} - \frac{22}{61} a^{4} + \frac{5}{61} a^{3} + \frac{3}{61} a^{2} - \frac{18}{61} a + \frac{25}{61}$, $\frac{1}{61} a^{26} - \frac{22}{61} a^{22} - \frac{9}{61} a^{21} - \frac{15}{61} a^{20} - \frac{7}{61} a^{19} + \frac{8}{61} a^{18} - \frac{22}{61} a^{17} - \frac{1}{61} a^{16} + \frac{7}{61} a^{15} - \frac{12}{61} a^{14} + \frac{5}{61} a^{13} + \frac{26}{61} a^{12} + \frac{30}{61} a^{11} - \frac{16}{61} a^{10} + \frac{13}{61} a^{9} - \frac{2}{61} a^{8} - \frac{16}{61} a^{7} - \frac{23}{61} a^{6} + \frac{26}{61} a^{5} + \frac{15}{61} a^{4} - \frac{2}{61} a^{3} - \frac{18}{61} a^{2} + \frac{11}{61} a + \frac{7}{61}$, $\frac{1}{61} a^{27} + \frac{16}{61} a^{22} + \frac{4}{61} a^{21} + \frac{16}{61} a^{20} + \frac{25}{61} a^{19} - \frac{22}{61} a^{18} - \frac{22}{61} a^{17} - \frac{4}{61} a^{16} - \frac{5}{61} a^{15} - \frac{19}{61} a^{14} + \frac{14}{61} a^{13} - \frac{16}{61} a^{12} + \frac{23}{61} a^{11} + \frac{19}{61} a^{10} - \frac{8}{61} a^{9} + \frac{26}{61} a^{8} + \frac{29}{61} a^{7} + \frac{9}{61} a^{6} - \frac{21}{61} a^{5} + \frac{21}{61} a^{4} + \frac{1}{61} a^{3} + \frac{11}{61} a^{2} - \frac{13}{61} a + \frac{10}{61}$, $\frac{1}{61} a^{28} + \frac{8}{61} a^{22} - \frac{20}{61} a^{21} - \frac{25}{61} a^{20} + \frac{10}{61} a^{19} - \frac{22}{61} a^{18} - \frac{22}{61} a^{17} + \frac{3}{61} a^{16} - \frac{13}{61} a^{15} - \frac{24}{61} a^{14} + \frac{26}{61} a^{13} + \frac{1}{61} a^{12} - \frac{26}{61} a^{11} - \frac{29}{61} a^{10} - \frac{14}{61} a^{9} + \frac{4}{61} a^{8} + \frac{10}{61} a^{7} + \frac{8}{61} a^{6} + \frac{25}{61} a^{5} + \frac{12}{61} a^{4} - \frac{25}{61} a^{3} - \frac{13}{61} a^{2} + \frac{19}{61} a + \frac{26}{61}$, $\frac{1}{61} a^{29} - \frac{18}{61} a^{22} + \frac{18}{61} a^{21} - \frac{15}{61} a^{20} - \frac{6}{61} a^{19} - \frac{22}{61} a^{18} - \frac{6}{61} a^{17} - \frac{9}{61} a^{16} - \frac{21}{61} a^{15} + \frac{7}{61} a^{14} + \frac{22}{61} a^{13} + \frac{24}{61} a^{12} - \frac{21}{61} a^{11} + \frac{6}{61} a^{10} - \frac{16}{61} a^{9} + \frac{28}{61} a^{8} - \frac{22}{61} a^{7} + \frac{9}{61} a^{6} + \frac{14}{61} a^{5} + \frac{11}{61} a^{4} + \frac{30}{61} a^{3} + \frac{19}{61} a^{2} + \frac{13}{61}$, $\frac{1}{26839573} a^{30} + \frac{147026}{26839573} a^{29} - \frac{186057}{26839573} a^{28} + \frac{18921}{26839573} a^{27} - \frac{80367}{26839573} a^{26} - \frac{118740}{26839573} a^{25} + \frac{22489}{26839573} a^{24} + \frac{101385}{26839573} a^{23} - \frac{6603888}{26839573} a^{22} + \frac{77738}{439993} a^{21} + \frac{1753799}{26839573} a^{20} - \frac{5713182}{26839573} a^{19} - \frac{2501438}{26839573} a^{18} + \frac{12637288}{26839573} a^{17} - \frac{1768446}{26839573} a^{16} - \frac{12311725}{26839573} a^{15} + \frac{12876224}{26839573} a^{14} - \frac{5886736}{26839573} a^{13} + \frac{11790140}{26839573} a^{12} - \frac{3956040}{26839573} a^{11} - \frac{13108915}{26839573} a^{10} + \frac{126263}{26839573} a^{9} + \frac{10185023}{26839573} a^{8} + \frac{11060310}{26839573} a^{7} - \frac{3970379}{26839573} a^{6} + \frac{11821532}{26839573} a^{5} - \frac{4386647}{26839573} a^{4} - \frac{8696281}{26839573} a^{3} + \frac{12303186}{26839573} a^{2} + \frac{3055197}{26839573} a - \frac{8943733}{26839573}$, $\frac{1}{4718443554547776012355807666438412106185189008532946132594897239} a^{31} + \frac{75418382990363529315351944112039247994820339560722442150}{4718443554547776012355807666438412106185189008532946132594897239} a^{30} + \frac{26581110356542692681928489829461401725700085167093237080921834}{4718443554547776012355807666438412106185189008532946132594897239} a^{29} + \frac{9179861142984862752518275306221772923678686618526385601682860}{4718443554547776012355807666438412106185189008532946132594897239} a^{28} - \frac{26882048875153875755168932647387917246911800231868059333530548}{4718443554547776012355807666438412106185189008532946132594897239} a^{27} + \frac{26787233370979070292806262792941565594072854537538339088887229}{4718443554547776012355807666438412106185189008532946132594897239} a^{26} - \frac{32805438238501973302325540694651921356180111765382897061679130}{4718443554547776012355807666438412106185189008532946132594897239} a^{25} + \frac{33698799266636198028295077560551327348580294652066115043576413}{4718443554547776012355807666438412106185189008532946132594897239} a^{24} - \frac{1332804051724081309601036083601869550212349637536418278395897}{4718443554547776012355807666438412106185189008532946132594897239} a^{23} + \frac{1863117365435339880861556751415196269799790067120843749663978335}{4718443554547776012355807666438412106185189008532946132594897239} a^{22} - \frac{749007305611157436958599560751645567182730242562918959639597980}{4718443554547776012355807666438412106185189008532946132594897239} a^{21} - \frac{1144557863461443633729761303736597381062176513118462902265459649}{4718443554547776012355807666438412106185189008532946132594897239} a^{20} - \frac{1404683557147131129865659876632695464107170314904755642967009970}{4718443554547776012355807666438412106185189008532946132594897239} a^{19} - \frac{827518707147162897687754863436740735565326388757991159974313970}{4718443554547776012355807666438412106185189008532946132594897239} a^{18} + \frac{1281112159408956979985068378181282874509626516431834235155779963}{4718443554547776012355807666438412106185189008532946132594897239} a^{17} + \frac{1265267149665027169002685739823722453797255882975279353224477998}{4718443554547776012355807666438412106185189008532946132594897239} a^{16} + \frac{251234687651709500672818955684854324466958372710221731096445199}{4718443554547776012355807666438412106185189008532946132594897239} a^{15} - \frac{1575509344617781595635040039442193216412962297372759811386466651}{4718443554547776012355807666438412106185189008532946132594897239} a^{14} + \frac{1160719596613723757919717238202184438516400732899951295971477930}{4718443554547776012355807666438412106185189008532946132594897239} a^{13} - \frac{150084571368152445156450343057806500689619804172862609512886351}{4718443554547776012355807666438412106185189008532946132594897239} a^{12} + \frac{1983383210022566696575575570657465081383200652246641641986458525}{4718443554547776012355807666438412106185189008532946132594897239} a^{11} - \frac{282498791955844678471242867620575151767236385988129757927579187}{4718443554547776012355807666438412106185189008532946132594897239} a^{10} - \frac{1214764434539717717686016916206246288101913987668878110834200761}{4718443554547776012355807666438412106185189008532946132594897239} a^{9} - \frac{1577868381889766958510041566111134608862463630893410238509660490}{4718443554547776012355807666438412106185189008532946132594897239} a^{8} - \frac{993797123152016705448565282528738713995412173314562397324082137}{4718443554547776012355807666438412106185189008532946132594897239} a^{7} + \frac{1242899177246643528166738804275132923119650180596781484468276066}{4718443554547776012355807666438412106185189008532946132594897239} a^{6} + \frac{605557012081753704272248288374943479307140920800935313406690272}{4718443554547776012355807666438412106185189008532946132594897239} a^{5} + \frac{678267624034771036790774960824807281331150632928017224416978879}{4718443554547776012355807666438412106185189008532946132594897239} a^{4} + \frac{237348760888972957688435704745952069767451123038981929573370344}{4718443554547776012355807666438412106185189008532946132594897239} a^{3} + \frac{1637297221535755522539736174969138862438544441793903340198075913}{4718443554547776012355807666438412106185189008532946132594897239} a^{2} - \frac{1109099691383841954676724259747006483476158042702268924794114913}{4718443554547776012355807666438412106185189008532946132594897239} a - \frac{386497249879936513913677374280505128414040606260460561025955482}{4718443554547776012355807666438412106185189008532946132594897239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3823661354055936000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1, 16.16.633251189136789386043275954593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16^{2}$ | R | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | $32$ | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $16^{2}$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 97 | Data not computed | ||||||