Normalized defining polynomial
\( x^{32} - 64 x^{30} + 1857 x^{28} - 32312 x^{26} + 375816 x^{24} - 3083136 x^{22} + 18349567 x^{20} - 80265176 x^{18} + 258638727 x^{16} - 609791200 x^{14} + 1035373423 x^{12} - 1232817768 x^{10} + 987632472 x^{8} - 498130816 x^{6} + 140204289 x^{4} - 16422920 x^{2} + 3481 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(43,·)$, $\chi_{840}(517,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(533,·)$, $\chi_{840}(547,·)$, $\chi_{840}(503,·)$, $\chi_{840}(421,·)$, $\chi_{840}(167,·)$, $\chi_{840}(41,·)$, $\chi_{840}(811,·)$, $\chi_{840}(559,·)$, $\chi_{840}(433,·)$, $\chi_{840}(197,·)$, $\chi_{840}(71,·)$, $\chi_{840}(587,·)$, $\chi_{840}(461,·)$, $\chi_{840}(589,·)$, $\chi_{840}(209,·)$, $\chi_{840}(83,·)$, $\chi_{840}(463,·)$, $\chi_{840}(97,·)$, $\chi_{840}(617,·)$, $\chi_{840}(491,·)$, $\chi_{840}(239,·)$, $\chi_{840}(113,·)$, $\chi_{840}(629,·)$, $\chi_{840}(169,·)$, $\chi_{840}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{627} a^{20} - \frac{40}{627} a^{18} + \frac{53}{627} a^{16} - \frac{130}{627} a^{14} + \frac{34}{627} a^{12} - \frac{20}{57} a^{10} - \frac{2}{19} a^{8} + \frac{1}{19} a^{6} - \frac{3}{19} a^{4} + \frac{214}{627} a^{2} - \frac{40}{209}$, $\frac{1}{627} a^{21} - \frac{40}{627} a^{19} + \frac{53}{627} a^{17} - \frac{130}{627} a^{15} + \frac{34}{627} a^{13} - \frac{20}{57} a^{11} - \frac{2}{19} a^{9} + \frac{1}{19} a^{7} - \frac{3}{19} a^{5} + \frac{214}{627} a^{3} - \frac{40}{209} a$, $\frac{1}{627} a^{22} - \frac{28}{209} a^{18} - \frac{100}{627} a^{16} + \frac{268}{627} a^{14} + \frac{16}{33} a^{12} + \frac{11}{57} a^{10} - \frac{28}{57} a^{8} - \frac{1}{19} a^{6} + \frac{16}{627} a^{4} + \frac{289}{627} a^{2} - \frac{202}{627}$, $\frac{1}{627} a^{23} - \frac{28}{209} a^{19} - \frac{100}{627} a^{17} + \frac{268}{627} a^{15} + \frac{16}{33} a^{13} + \frac{11}{57} a^{11} - \frac{28}{57} a^{9} - \frac{1}{19} a^{7} + \frac{16}{627} a^{5} + \frac{289}{627} a^{3} - \frac{202}{627} a$, $\frac{1}{9405} a^{24} - \frac{1}{3135} a^{22} + \frac{1}{3135} a^{20} - \frac{164}{1881} a^{18} + \frac{111}{1045} a^{16} - \frac{244}{1045} a^{14} - \frac{14}{95} a^{12} - \frac{119}{285} a^{10} - \frac{128}{285} a^{8} + \frac{4658}{9405} a^{6} - \frac{489}{1045} a^{4} + \frac{137}{3135} a^{2} + \frac{151}{855}$, $\frac{1}{9405} a^{25} - \frac{1}{3135} a^{23} + \frac{1}{3135} a^{21} - \frac{164}{1881} a^{19} + \frac{111}{1045} a^{17} - \frac{244}{1045} a^{15} - \frac{14}{95} a^{13} - \frac{119}{285} a^{11} - \frac{128}{285} a^{9} + \frac{4658}{9405} a^{7} - \frac{489}{1045} a^{5} + \frac{137}{3135} a^{3} + \frac{151}{855} a$, $\frac{1}{4185225} a^{26} - \frac{52}{4185225} a^{24} - \frac{2}{3135} a^{22} + \frac{563}{4185225} a^{20} + \frac{357934}{4185225} a^{18} - \frac{21073}{465025} a^{16} - \frac{575414}{1395075} a^{14} + \frac{195258}{465025} a^{12} - \frac{44002}{126825} a^{10} + \frac{565394}{4185225} a^{8} + \frac{403102}{4185225} a^{6} - \frac{993}{8455} a^{4} - \frac{1509238}{4185225} a^{2} - \frac{1494839}{4185225}$, $\frac{1}{246928275} a^{27} + \frac{1082}{27436475} a^{25} + \frac{17}{61655} a^{23} + \frac{136733}{246928275} a^{21} + \frac{63751}{27436475} a^{19} + \frac{158741}{7482675} a^{17} + \frac{4945256}{82309425} a^{15} - \frac{14902006}{82309425} a^{13} + \frac{3645938}{7482675} a^{11} - \frac{32637391}{246928275} a^{9} + \frac{4206083}{27436475} a^{7} - \frac{345155}{1097459} a^{5} + \frac{121269377}{246928275} a^{3} - \frac{21437458}{82309425} a$, $\frac{1}{246928275} a^{28} + \frac{1}{82309425} a^{26} - \frac{661}{49385655} a^{24} - \frac{99562}{246928275} a^{22} + \frac{18383}{82309425} a^{20} - \frac{19233862}{246928275} a^{18} - \frac{168436}{4332075} a^{16} + \frac{11477779}{82309425} a^{14} - \frac{4478327}{82309425} a^{12} - \frac{8075986}{246928275} a^{10} + \frac{13559299}{82309425} a^{8} - \frac{1358638}{9877131} a^{6} + \frac{7519567}{22448025} a^{4} - \frac{25611118}{82309425} a^{2} + \frac{1259}{837045}$, $\frac{1}{246928275} a^{29} - \frac{696}{27436475} a^{25} + \frac{11243}{246928275} a^{23} + \frac{2612}{5487295} a^{21} - \frac{33742}{924825} a^{19} - \frac{1955249}{27436475} a^{17} - \frac{4460699}{82309425} a^{15} - \frac{172642}{1444025} a^{13} - \frac{99568783}{246928275} a^{11} + \frac{600230}{3292377} a^{9} - \frac{11949314}{27436475} a^{7} + \frac{2840282}{246928275} a^{5} - \frac{4475857}{16461885} a^{3} + \frac{9265669}{82309425} a$, $\frac{1}{246928275} a^{30} - \frac{2}{49385655} a^{26} + \frac{73}{16461885} a^{24} + \frac{13087}{16461885} a^{22} + \frac{182968}{246928275} a^{20} + \frac{7590004}{49385655} a^{18} - \frac{6226}{78765} a^{16} - \frac{114363}{498845} a^{14} + \frac{23307484}{49385655} a^{12} - \frac{38242753}{82309425} a^{10} + \frac{6243407}{49385655} a^{8} - \frac{11820091}{49385655} a^{6} - \frac{6850607}{16461885} a^{4} - \frac{20600467}{49385655} a^{2} + \frac{550906}{4185225}$, $\frac{1}{246928275} a^{31} - \frac{119}{4489605} a^{25} + \frac{716}{16461885} a^{23} + \frac{17921}{82309425} a^{21} + \frac{534157}{4489605} a^{19} - \frac{33373}{498845} a^{17} - \frac{5839994}{16461885} a^{15} - \frac{18089408}{49385655} a^{13} - \frac{36895693}{82309425} a^{11} + \frac{6430847}{16461885} a^{9} + \frac{5146142}{16461885} a^{7} - \frac{437419}{1496535} a^{5} - \frac{480228}{5487295} a^{3} + \frac{89232994}{246928275} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3007047405418283000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |