Normalized defining polynomial
\( x^{32} - 64 x^{30} + 1856 x^{28} - 32256 x^{26} + 374431 x^{24} - 3063248 x^{22} + 18166288 x^{20} - 79134848 x^{18} + 253925217 x^{16} - 596716576 x^{14} + 1012551072 x^{12} - 1211673344 x^{10} + 986220191 x^{8} - 516827632 x^{6} + 159875504 x^{4} - 25087872 x^{2} + 1442401 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156938077449417789520626992646455296000000000000000000000000=2^{96}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(560=2^{4}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(517,·)$, $\chi_{560}(391,·)$, $\chi_{560}(139,·)$, $\chi_{560}(13,·)$, $\chi_{560}(531,·)$, $\chi_{560}(407,·)$, $\chi_{560}(153,·)$, $\chi_{560}(29,·)$, $\chi_{560}(419,·)$, $\chi_{560}(293,·)$, $\chi_{560}(169,·)$, $\chi_{560}(43,·)$, $\chi_{560}(559,·)$, $\chi_{560}(433,·)$, $\chi_{560}(309,·)$, $\chi_{560}(183,·)$, $\chi_{560}(279,·)$, $\chi_{560}(449,·)$, $\chi_{560}(323,·)$, $\chi_{560}(141,·)$, $\chi_{560}(547,·)$, $\chi_{560}(267,·)$, $\chi_{560}(463,·)$, $\chi_{560}(421,·)$, $\chi_{560}(97,·)$, $\chi_{560}(237,·)$, $\chi_{560}(111,·)$, $\chi_{560}(377,·)$, $\chi_{560}(251,·)$, $\chi_{560}(281,·)$, $\chi_{560}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{627} a^{20} - \frac{40}{627} a^{18} + \frac{53}{627} a^{16} - \frac{130}{627} a^{14} + \frac{34}{627} a^{12} - \frac{20}{57} a^{10} - \frac{2}{19} a^{8} + \frac{1}{19} a^{6} - \frac{3}{19} a^{4} + \frac{214}{627} a^{2} + \frac{167}{627}$, $\frac{1}{753027} a^{21} - \frac{90119}{753027} a^{19} - \frac{30148}{251009} a^{17} - \frac{305479}{753027} a^{15} - \frac{170510}{753027} a^{13} + \frac{17707}{68457} a^{11} + \frac{3646}{22819} a^{9} + \frac{25007}{68457} a^{7} + \frac{31930}{68457} a^{5} - \frac{99134}{251009} a^{3} - \frac{232868}{753027} a$, $\frac{1}{753027} a^{22} - \frac{4}{68457} a^{20} + \frac{23897}{251009} a^{18} - \frac{2614}{39633} a^{16} + \frac{168172}{753027} a^{14} + \frac{245219}{753027} a^{12} - \frac{3560}{22819} a^{10} + \frac{32213}{68457} a^{8} + \frac{28327}{68457} a^{6} - \frac{59501}{251009} a^{4} + \frac{217507}{753027} a^{2} - \frac{5}{209}$, $\frac{1}{753027} a^{23} + \frac{122599}{753027} a^{19} - \frac{13058}{753027} a^{17} + \frac{10191}{251009} a^{15} - \frac{4017}{13211} a^{13} - \frac{7418}{68457} a^{11} - \frac{3784}{22819} a^{9} - \frac{4105}{22819} a^{7} + \frac{215077}{753027} a^{5} + \frac{61429}{251009} a^{3} + \frac{278171}{753027} a$, $\frac{1}{753027} a^{24} + \frac{97}{753027} a^{20} + \frac{117851}{753027} a^{18} + \frac{3379}{39633} a^{16} + \frac{133733}{753027} a^{14} + \frac{6829}{251009} a^{12} - \frac{155}{3603} a^{10} + \frac{15308}{68457} a^{8} - \frac{313363}{753027} a^{6} + \frac{87851}{251009} a^{4} + \frac{55893}{251009} a^{2} - \frac{35}{209}$, $\frac{1}{753027} a^{25} + \frac{24693}{251009} a^{19} + \frac{17318}{251009} a^{17} + \frac{146134}{753027} a^{15} + \frac{244372}{753027} a^{13} - \frac{31918}{68457} a^{11} + \frac{1332}{22819} a^{9} + \frac{121383}{251009} a^{7} + \frac{80458}{753027} a^{5} - \frac{101371}{753027} a^{3} - \frac{128719}{753027} a$, $\frac{1}{753027} a^{26} - \frac{383}{753027} a^{20} + \frac{1666}{68457} a^{18} - \frac{11739}{251009} a^{16} + \frac{45027}{251009} a^{14} + \frac{129302}{753027} a^{12} - \frac{12818}{68457} a^{10} + \frac{2484}{251009} a^{8} - \frac{117707}{753027} a^{6} - \frac{259903}{753027} a^{4} - \frac{83340}{251009} a^{2} + \frac{305}{627}$, $\frac{1}{753027} a^{27} - \frac{109018}{753027} a^{19} - \frac{12009}{251009} a^{17} + \frac{18833}{39633} a^{15} - \frac{54899}{251009} a^{13} - \frac{31099}{68457} a^{11} - \frac{347419}{753027} a^{9} - \frac{62332}{251009} a^{7} - \frac{279637}{753027} a^{5} + \frac{4919}{68457} a^{3} + \frac{95352}{251009} a$, $\frac{1}{753027} a^{28} + \frac{91}{251009} a^{20} + \frac{10045}{68457} a^{18} - \frac{124975}{753027} a^{16} - \frac{105341}{251009} a^{14} - \frac{140321}{753027} a^{12} + \frac{207443}{753027} a^{10} - \frac{371950}{753027} a^{8} + \frac{21283}{251009} a^{6} + \frac{25336}{68457} a^{4} + \frac{330493}{753027} a^{2} - \frac{20}{209}$, $\frac{1}{753027} a^{29} + \frac{114100}{753027} a^{19} - \frac{32645}{753027} a^{17} - \frac{385}{68457} a^{15} - \frac{9252}{251009} a^{13} + \frac{82410}{251009} a^{11} + \frac{8707}{39633} a^{9} - \frac{231490}{753027} a^{7} + \frac{2485}{68457} a^{5} - \frac{102565}{251009} a^{3} + \frac{82212}{251009} a$, $\frac{1}{753027} a^{30} + \frac{5}{753027} a^{20} + \frac{4331}{251009} a^{18} - \frac{9018}{251009} a^{16} - \frac{255946}{753027} a^{14} + \frac{133135}{753027} a^{12} - \frac{5905}{13211} a^{10} - \frac{231490}{753027} a^{8} + \frac{2485}{68457} a^{6} - \frac{102565}{251009} a^{4} - \frac{72830}{753027} a^{2} - \frac{10}{33}$, $\frac{1}{753027} a^{31} - \frac{12810}{251009} a^{19} - \frac{76852}{753027} a^{17} + \frac{267413}{753027} a^{15} - \frac{269360}{753027} a^{13} - \frac{18475}{251009} a^{11} + \frac{170956}{753027} a^{9} - \frac{1646}{3603} a^{7} + \frac{195236}{753027} a^{5} + \frac{53045}{251009} a^{3} + \frac{61041}{251009} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23306007003525570000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |