Normalized defining polynomial
\( x^{32} - 544 x^{30} + 134096 x^{28} - 19809216 x^{26} + 1954391400 x^{24} - 135851917760 x^{22} + 6839621551840 x^{20} - 252479744142208 x^{18} + 6840623067852948 x^{16} - 134829672062029120 x^{14} + 1896195478908718624 x^{12} - 18420184652256123776 x^{10} + 117428677158132789072 x^{8} - 452599597791669697152 x^{6} + 915975376483141053760 x^{4} - 732780301186512843008 x^{2} + 97322383751333736962 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{17} a^{2}$, $\frac{1}{17} a^{3}$, $\frac{1}{289} a^{4}$, $\frac{1}{289} a^{5}$, $\frac{1}{4913} a^{6}$, $\frac{1}{4913} a^{7}$, $\frac{1}{83521} a^{8}$, $\frac{1}{83521} a^{9}$, $\frac{1}{1419857} a^{10}$, $\frac{1}{1419857} a^{11}$, $\frac{1}{24137569} a^{12}$, $\frac{1}{24137569} a^{13}$, $\frac{1}{410338673} a^{14}$, $\frac{1}{410338673} a^{15}$, $\frac{1}{6975757441} a^{16}$, $\frac{1}{6975757441} a^{17}$, $\frac{1}{118587876497} a^{18}$, $\frac{1}{118587876497} a^{19}$, $\frac{1}{2015993900449} a^{20}$, $\frac{1}{2015993900449} a^{21}$, $\frac{1}{34271896307633} a^{22}$, $\frac{1}{34271896307633} a^{23}$, $\frac{1}{582622237229761} a^{24}$, $\frac{1}{582622237229761} a^{25}$, $\frac{1}{9904578032905937} a^{26}$, $\frac{1}{9904578032905937} a^{27}$, $\frac{1}{168377826559400929} a^{28}$, $\frac{1}{168377826559400929} a^{29}$, $\frac{1}{2862423051509815793} a^{30}$, $\frac{1}{2862423051509815793} a^{31}$
Class group and class number
Not computed
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | R | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |