Normalized defining polynomial
\( x^{32} - x^{31} - 62 x^{30} + 57 x^{29} + 1741 x^{28} - 1456 x^{27} - 29279 x^{26} + 21999 x^{25} + 328550 x^{24} - 218555 x^{23} - 2594055 x^{22} + 1501280 x^{21} + 14806525 x^{20} - 7300125 x^{19} - 61804530 x^{18} + 25303905 x^{17} + 188675045 x^{16} - 62155621 x^{15} - 417033506 x^{14} + 106258835 x^{13} + 653702339 x^{12} - 122456240 x^{11} - 702418817 x^{10} + 90494753 x^{9} + 490797914 x^{8} - 39835109 x^{7} - 205111641 x^{6} + 9562400 x^{5} + 44453923 x^{4} - 1257219 x^{3} - 3752014 x^{2} + 103231 x + 76603 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11721315531921426838644724774450299033325694662265349722529=3^{16}\cdot 7^{16}\cdot 17^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(357=3\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{357}(1,·)$, $\chi_{357}(260,·)$, $\chi_{357}(265,·)$, $\chi_{357}(139,·)$, $\chi_{357}(274,·)$, $\chi_{357}(29,·)$, $\chi_{357}(286,·)$, $\chi_{357}(160,·)$, $\chi_{357}(293,·)$, $\chi_{357}(169,·)$, $\chi_{357}(43,·)$, $\chi_{357}(176,·)$, $\chi_{357}(181,·)$, $\chi_{357}(314,·)$, $\chi_{357}(188,·)$, $\chi_{357}(64,·)$, $\chi_{357}(197,·)$, $\chi_{357}(71,·)$, $\chi_{357}(328,·)$, $\chi_{357}(83,·)$, $\chi_{357}(218,·)$, $\chi_{357}(92,·)$, $\chi_{357}(97,·)$, $\chi_{357}(356,·)$, $\chi_{357}(230,·)$, $\chi_{357}(104,·)$, $\chi_{357}(106,·)$, $\chi_{357}(113,·)$, $\chi_{357}(244,·)$, $\chi_{357}(251,·)$, $\chi_{357}(253,·)$, $\chi_{357}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{271} a^{17} - \frac{34}{271} a^{15} - \frac{66}{271} a^{13} - \frac{13}{271} a^{11} + \frac{55}{271} a^{9} - \frac{132}{271} a^{7} - \frac{103}{271} a^{5} - \frac{96}{271} a^{3} + \frac{16}{271} a + \frac{85}{271}$, $\frac{1}{271} a^{18} - \frac{34}{271} a^{16} - \frac{66}{271} a^{14} - \frac{13}{271} a^{12} + \frac{55}{271} a^{10} - \frac{132}{271} a^{8} - \frac{103}{271} a^{6} - \frac{96}{271} a^{4} + \frac{16}{271} a^{2} + \frac{85}{271} a$, $\frac{1}{271} a^{19} + \frac{133}{271} a^{15} - \frac{89}{271} a^{13} - \frac{116}{271} a^{11} + \frac{112}{271} a^{9} + \frac{16}{271} a^{7} - \frac{75}{271} a^{5} + \frac{4}{271} a^{3} + \frac{85}{271} a^{2} + \frac{2}{271} a - \frac{91}{271}$, $\frac{1}{271} a^{20} + \frac{133}{271} a^{16} - \frac{89}{271} a^{14} - \frac{116}{271} a^{12} + \frac{112}{271} a^{10} + \frac{16}{271} a^{8} - \frac{75}{271} a^{6} + \frac{4}{271} a^{4} + \frac{85}{271} a^{3} + \frac{2}{271} a^{2} - \frac{91}{271} a$, $\frac{1}{271} a^{21} + \frac{97}{271} a^{15} - \frac{10}{271} a^{13} - \frac{56}{271} a^{11} + \frac{18}{271} a^{9} - \frac{134}{271} a^{7} - \frac{118}{271} a^{5} + \frac{85}{271} a^{4} + \frac{33}{271} a^{3} - \frac{91}{271} a^{2} + \frac{40}{271} a + \frac{77}{271}$, $\frac{1}{271} a^{22} + \frac{97}{271} a^{16} - \frac{10}{271} a^{14} - \frac{56}{271} a^{12} + \frac{18}{271} a^{10} - \frac{134}{271} a^{8} - \frac{118}{271} a^{6} + \frac{85}{271} a^{5} + \frac{33}{271} a^{4} - \frac{91}{271} a^{3} + \frac{40}{271} a^{2} + \frac{77}{271} a$, $\frac{1}{271} a^{23} + \frac{36}{271} a^{15} + \frac{113}{271} a^{13} - \frac{76}{271} a^{11} - \frac{49}{271} a^{9} - \frac{51}{271} a^{7} + \frac{85}{271} a^{6} - \frac{3}{271} a^{5} - \frac{91}{271} a^{4} - \frac{133}{271} a^{3} + \frac{77}{271} a^{2} + \frac{74}{271} a - \frac{115}{271}$, $\frac{1}{271} a^{24} + \frac{36}{271} a^{16} + \frac{113}{271} a^{14} - \frac{76}{271} a^{12} - \frac{49}{271} a^{10} - \frac{51}{271} a^{8} + \frac{85}{271} a^{7} - \frac{3}{271} a^{6} - \frac{91}{271} a^{5} - \frac{133}{271} a^{4} + \frac{77}{271} a^{3} + \frac{74}{271} a^{2} - \frac{115}{271} a$, $\frac{1}{32756041} a^{25} - \frac{28718}{32756041} a^{24} + \frac{59357}{32756041} a^{23} - \frac{21303}{32756041} a^{22} - \frac{6306}{32756041} a^{21} - \frac{12577}{32756041} a^{20} - \frac{3378}{32756041} a^{19} + \frac{32559}{32756041} a^{18} + \frac{60405}{32756041} a^{17} + \frac{2940251}{32756041} a^{16} + \frac{8114700}{32756041} a^{15} + \frac{3402779}{32756041} a^{14} - \frac{33139}{32756041} a^{13} + \frac{11487011}{32756041} a^{12} + \frac{9646696}{32756041} a^{11} - \frac{7608424}{32756041} a^{10} + \frac{15413519}{32756041} a^{9} + \frac{2514567}{32756041} a^{8} + \frac{9528583}{32756041} a^{7} + \frac{10212859}{32756041} a^{6} + \frac{530337}{32756041} a^{5} + \frac{320113}{32756041} a^{4} + \frac{13747324}{32756041} a^{3} - \frac{8360037}{32756041} a^{2} - \frac{1626019}{32756041} a - \frac{12172209}{32756041}$, $\frac{1}{32756041} a^{26} + \frac{38666}{32756041} a^{24} - \frac{50690}{32756041} a^{23} - \frac{57729}{32756041} a^{22} - \frac{43527}{32756041} a^{21} - \frac{27116}{32756041} a^{20} - \frac{38303}{32756041} a^{19} + \frac{31711}{32756041} a^{18} + \frac{9545}{32756041} a^{17} - \frac{2698652}{32756041} a^{16} + \frac{13431253}{32756041} a^{15} + \frac{9945622}{32756041} a^{14} + \frac{6946365}{32756041} a^{13} + \frac{1858746}{32756041} a^{12} + \frac{4017211}{32756041} a^{11} + \frac{10364947}{32756041} a^{10} - \frac{7273443}{32756041} a^{9} - \frac{4811071}{32756041} a^{8} + \frac{11356456}{32756041} a^{7} - \frac{15658760}{32756041} a^{6} + \frac{2967757}{32756041} a^{5} - \frac{4101226}{32756041} a^{4} - \frac{360895}{32756041} a^{3} + \frac{11293621}{32756041} a^{2} + \frac{5554745}{32756041} a + \frac{8191457}{32756041}$, $\frac{1}{32756041} a^{27} + \frac{38492}{32756041} a^{24} - \frac{56943}{32756041} a^{23} + \frac{43277}{32756041} a^{22} + \frac{3873}{32756041} a^{21} - \frac{54}{32756041} a^{20} - \frac{16092}{32756041} a^{19} - \frac{45284}{32756041} a^{18} + \frac{51984}{32756041} a^{17} + \frac{11872105}{32756041} a^{16} + \frac{8490320}{32756041} a^{15} + \frac{10429311}{32756041} a^{14} - \frac{14701478}{32756041} a^{13} + \frac{6595261}{32756041} a^{12} - \frac{14478727}{32756041} a^{11} + \frac{12790982}{32756041} a^{10} - \frac{9890123}{32756041} a^{9} - \frac{13158192}{32756041} a^{8} - \frac{15635614}{32756041} a^{7} - \frac{5990951}{32756041} a^{6} - \frac{15345779}{32756041} a^{5} + \frac{3933345}{32756041} a^{4} + \frac{10089214}{32756041} a^{3} + \frac{364762}{32756041} a^{2} - \frac{9943544}{32756041} a - \frac{14634643}{32756041}$, $\frac{1}{32756041} a^{28} - \frac{8982}{32756041} a^{24} - \frac{22725}{32756041} a^{23} + \frac{10085}{32756041} a^{22} + \frac{21530}{32756041} a^{21} + \frac{9437}{32756041} a^{20} + \frac{44367}{32756041} a^{19} - \frac{18516}{32756041} a^{18} - \frac{7957}{32756041} a^{17} - \frac{8341843}{32756041} a^{16} + \frac{7103722}{32756041} a^{15} + \frac{8419958}{32756041} a^{14} + \frac{465565}{32756041} a^{13} - \frac{16114104}{32756041} a^{12} - \frac{14964069}{32756041} a^{11} + \frac{12263396}{32756041} a^{10} - \frac{8742748}{32756041} a^{9} - \frac{15148327}{32756041} a^{8} - \frac{9970613}{32756041} a^{7} - \frac{3280909}{32756041} a^{6} - \frac{11004144}{32756041} a^{5} + \frac{9405874}{32756041} a^{4} + \frac{9673418}{32756041} a^{3} - \frac{15218351}{32756041} a^{2} + \frac{10171266}{32756041} a - \frac{10104249}{32756041}$, $\frac{1}{32756041} a^{29} - \frac{29087}{32756041} a^{24} - \frac{7322}{32756041} a^{23} + \frac{16777}{32756041} a^{22} + \frac{57444}{32756041} a^{21} - \frac{28733}{32756041} a^{20} - \frac{21091}{32756041} a^{19} + \frac{50032}{32756041} a^{18} - \frac{33953}{32756041} a^{17} + \frac{13981319}{32756041} a^{16} + \frac{377033}{32756041} a^{15} - \frac{3686744}{32756041} a^{14} - \frac{4338842}{32756041} a^{13} + \frac{1717234}{32756041} a^{12} + \frac{9609614}{32756041} a^{11} - \frac{6781103}{32756041} a^{10} + \frac{15104133}{32756041} a^{9} + \frac{9012739}{32756041} a^{8} + \frac{102660}{32756041} a^{7} - \frac{12820475}{32756041} a^{6} - \frac{9247436}{32756041} a^{5} - \frac{15975616}{32756041} a^{4} + \frac{9353418}{32756041} a^{3} + \frac{9372875}{32756041} a^{2} + \frac{10263222}{32756041} a - \frac{9005288}{32756041}$, $\frac{1}{32756041} a^{30} + \frac{11693}{32756041} a^{24} + \frac{12472}{32756041} a^{23} + \frac{1829}{32756041} a^{22} + \frac{30823}{32756041} a^{21} + \frac{28227}{32756041} a^{20} - \frac{58602}{32756041} a^{19} - \frac{14605}{32756041} a^{18} - \frac{20338}{32756041} a^{17} + \frac{10488887}{32756041} a^{16} + \frac{8383554}{32756041} a^{15} + \frac{3360873}{32756041} a^{14} + \frac{8639013}{32756041} a^{13} + \frac{13186369}{32756041} a^{12} + \frac{13285376}{32756041} a^{11} + \frac{952497}{32756041} a^{10} - \frac{7056957}{32756041} a^{9} - \frac{9332727}{32756041} a^{8} - \frac{7053172}{32756041} a^{7} + \frac{1909246}{32756041} a^{6} - \frac{5467153}{32756041} a^{5} - \frac{7497434}{32756041} a^{4} - \frac{347592}{32756041} a^{3} - \frac{13425042}{32756041} a^{2} + \frac{7636460}{32756041} a - \frac{10038825}{32756041}$, $\frac{1}{32756041} a^{31} + \frac{32408}{32756041} a^{24} - \frac{18290}{32756041} a^{23} + \frac{11671}{32756041} a^{22} + \frac{32975}{32756041} a^{21} + \frac{25123}{32756041} a^{20} - \frac{40468}{32756041} a^{19} + \frac{10925}{32756041} a^{18} + \frac{27569}{32756041} a^{17} - \frac{1698184}{32756041} a^{16} + \frac{1667031}{32756041} a^{15} + \frac{14907851}{32756041} a^{14} + \frac{10629979}{32756041} a^{13} + \frac{7037469}{32756041} a^{12} - \frac{684018}{32756041} a^{11} - \frac{2327641}{32756041} a^{10} + \frac{928257}{32756041} a^{9} - \frac{2212545}{32756041} a^{8} - \frac{4538846}{32756041} a^{7} - \frac{13669991}{32756041} a^{6} + \frac{10084975}{32756041} a^{5} - \frac{4888871}{32756041} a^{4} + \frac{204588}{32756041} a^{3} - \frac{15595897}{32756041} a^{2} + \frac{3288852}{32756041} a - \frac{10346312}{32756041}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7704904687609626000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{4}$ | R | $16^{2}$ | R | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||