Normalized defining polynomial
\( x^{32} + 34 x^{30} + 680 x^{28} + 9112 x^{26} + 91392 x^{24} + 701760 x^{22} + 4252992 x^{20} + 20297728 x^{18} + 76865024 x^{16} + 226539008 x^{14} + 517296128 x^{12} + 874786816 x^{10} + 1085493248 x^{8} + 880705536 x^{6} + 482967552 x^{4} + 113639424 x^{2} + 18939904 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(99276740263879938750515115508224780490603194567662317338624=2^{48}\cdot 3^{16}\cdot 17^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(408=2^{3}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{408}(1,·)$, $\chi_{408}(131,·)$, $\chi_{408}(257,·)$, $\chi_{408}(137,·)$, $\chi_{408}(11,·)$, $\chi_{408}(145,·)$, $\chi_{408}(403,·)$, $\chi_{408}(25,·)$, $\chi_{408}(281,·)$, $\chi_{408}(283,·)$, $\chi_{408}(161,·)$, $\chi_{408}(163,·)$, $\chi_{408}(49,·)$, $\chi_{408}(169,·)$, $\chi_{408}(299,·)$, $\chi_{408}(305,·)$, $\chi_{408}(185,·)$, $\chi_{408}(347,·)$, $\chi_{408}(139,·)$, $\chi_{408}(275,·)$, $\chi_{408}(211,·)$, $\chi_{408}(89,·)$, $\chi_{408}(91,·)$, $\chi_{408}(353,·)$, $\chi_{408}(227,·)$, $\chi_{408}(361,·)$, $\chi_{408}(107,·)$, $\chi_{408}(371,·)$, $\chi_{408}(235,·)$, $\chi_{408}(121,·)$, $\chi_{408}(217,·)$, $\chi_{408}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{4352} a^{16}$, $\frac{1}{4352} a^{17}$, $\frac{1}{8704} a^{18}$, $\frac{1}{8704} a^{19}$, $\frac{1}{17408} a^{20}$, $\frac{1}{17408} a^{21}$, $\frac{1}{34816} a^{22}$, $\frac{1}{34816} a^{23}$, $\frac{1}{278528} a^{24} - \frac{1}{34816} a^{18} + \frac{1}{256} a^{12} - \frac{1}{32} a^{6} + \frac{1}{4}$, $\frac{1}{278528} a^{25} - \frac{1}{34816} a^{19} + \frac{1}{256} a^{13} - \frac{1}{32} a^{7} + \frac{1}{4} a$, $\frac{1}{557056} a^{26} - \frac{1}{69632} a^{20} + \frac{1}{512} a^{14} - \frac{1}{64} a^{8} + \frac{1}{8} a^{2}$, $\frac{1}{557056} a^{27} - \frac{1}{69632} a^{21} + \frac{1}{512} a^{15} - \frac{1}{64} a^{9} + \frac{1}{8} a^{3}$, $\frac{1}{642842624} a^{28} - \frac{69}{160710656} a^{26} + \frac{49}{160710656} a^{24} - \frac{49}{4726784} a^{22} + \frac{263}{20088832} a^{20} - \frac{241}{20088832} a^{18} + \frac{709}{10044416} a^{16} + \frac{323}{147712} a^{14} - \frac{1147}{147712} a^{12} - \frac{661}{73856} a^{10} + \frac{29}{18464} a^{8} - \frac{837}{18464} a^{6} + \frac{333}{9232} a^{4} - \frac{143}{2308} a^{2} + \frac{773}{2308}$, $\frac{1}{642842624} a^{29} - \frac{69}{160710656} a^{27} + \frac{49}{160710656} a^{25} - \frac{49}{4726784} a^{23} + \frac{263}{20088832} a^{21} - \frac{241}{20088832} a^{19} + \frac{709}{10044416} a^{17} + \frac{323}{147712} a^{15} - \frac{1147}{147712} a^{13} - \frac{661}{73856} a^{11} + \frac{29}{18464} a^{9} - \frac{837}{18464} a^{7} + \frac{333}{9232} a^{5} - \frac{143}{2308} a^{3} + \frac{773}{2308} a$, $\frac{1}{31985258206080727908352} a^{30} + \frac{7076152584669}{15992629103040363954176} a^{28} - \frac{780854399320071}{3998157275760090988544} a^{26} + \frac{5826370154790201}{3998157275760090988544} a^{24} + \frac{9260584561972939}{1999078637880045494272} a^{22} - \frac{7638797047769335}{499769659470011373568} a^{20} - \frac{14472775595430977}{499769659470011373568} a^{18} - \frac{10414764239601135}{249884829735005686784} a^{16} - \frac{3310315638259731}{3674776907867730688} a^{14} - \frac{24963391630336419}{3674776907867730688} a^{12} - \frac{616762865249953}{1837388453933865344} a^{10} - \frac{4194758450254935}{459347113483466336} a^{8} + \frac{6276853258721775}{459347113483466336} a^{6} - \frac{20643837479258047}{229673556741733168} a^{4} - \frac{4858269251464175}{57418389185433292} a^{2} + \frac{9313273874788873}{28709194592716646}$, $\frac{1}{31985258206080727908352} a^{31} + \frac{7076152584669}{15992629103040363954176} a^{29} - \frac{780854399320071}{3998157275760090988544} a^{27} + \frac{5826370154790201}{3998157275760090988544} a^{25} + \frac{9260584561972939}{1999078637880045494272} a^{23} - \frac{7638797047769335}{499769659470011373568} a^{21} - \frac{14472775595430977}{499769659470011373568} a^{19} - \frac{10414764239601135}{249884829735005686784} a^{17} - \frac{3310315638259731}{3674776907867730688} a^{15} - \frac{24963391630336419}{3674776907867730688} a^{13} - \frac{616762865249953}{1837388453933865344} a^{11} - \frac{4194758450254935}{459347113483466336} a^{9} + \frac{6276853258721775}{459347113483466336} a^{7} - \frac{20643837479258047}{229673556741733168} a^{5} - \frac{4858269251464175}{57418389185433292} a^{3} + \frac{9313273874788873}{28709194592716646} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8862376563653}{470371444207069528064} a^{30} + \frac{5062829345284895}{7996314551520181977088} a^{28} + \frac{100477630908866135}{7996314551520181977088} a^{26} + \frac{667049026921297383}{3998157275760090988544} a^{24} + \frac{1657686115715772759}{999539318940022747136} a^{22} + \frac{12592757530253509517}{999539318940022747136} a^{20} + \frac{37715115643349410873}{499769659470011373568} a^{18} + \frac{44345503854995443385}{124942414867502843392} a^{16} + \frac{9712431125187831519}{7349553815735461376} a^{14} + \frac{13992055396039302215}{3674776907867730688} a^{12} + \frac{7774928198934191755}{918694226966932672} a^{10} + \frac{12626852064601754869}{918694226966932672} a^{8} + \frac{7491285242414234013}{459347113483466336} a^{6} + \frac{1387611017329210503}{114836778370866584} a^{4} + \frac{773969177576190803}{114836778370866584} a^{2} + \frac{90198638894591567}{57418389185433292} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.6 | $x^{8} + 2 x^{6} + 8 x^{4} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ |
| 2.8.12.6 | $x^{8} + 2 x^{6} + 8 x^{4} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ | |
| 2.8.12.6 | $x^{8} + 2 x^{6} + 8 x^{4} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ | |
| 2.8.12.6 | $x^{8} + 2 x^{6} + 8 x^{4} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||