Normalized defining polynomial
\( x^{32} + 289 x^{24} - 307104 x^{16} + 112890625 x^{8} + 152587890625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{279} a^{16} + \frac{5}{279} a^{8} + \frac{25}{279}$, $\frac{1}{1395} a^{17} + \frac{284}{1395} a^{9} - \frac{254}{1395} a$, $\frac{1}{6975} a^{18} - \frac{1111}{6975} a^{10} - \frac{254}{6975} a^{2}$, $\frac{1}{34875} a^{19} - \frac{8086}{34875} a^{11} - \frac{7229}{34875} a^{3}$, $\frac{1}{174375} a^{20} - \frac{77836}{174375} a^{12} - \frac{42104}{174375} a^{4}$, $\frac{1}{871875} a^{21} - \frac{77836}{871875} a^{13} - \frac{216479}{871875} a^{5}$, $\frac{1}{4359375} a^{22} - \frac{77836}{4359375} a^{14} - \frac{1088354}{4359375} a^{6}$, $\frac{1}{21796875} a^{23} - \frac{77836}{21796875} a^{15} - \frac{1088354}{21796875} a^{7}$, $\frac{1}{33469537500000} a^{24} + \frac{136516}{108984375} a^{16} + \frac{32812499}{108984375} a^{8} - \frac{42380063}{85682016}$, $\frac{1}{167347687500000} a^{25} + \frac{136516}{544921875} a^{17} + \frac{250781249}{544921875} a^{9} - \frac{128062079}{428410080} a$, $\frac{1}{836738437500000} a^{26} + \frac{136516}{2724609375} a^{18} + \frac{1340624999}{2724609375} a^{10} + \frac{728758081}{2142050400} a^{2}$, $\frac{1}{4183692187500000} a^{27} + \frac{136516}{13623046875} a^{19} - \frac{4108593751}{13623046875} a^{11} - \frac{3555342719}{10710252000} a^{3}$, $\frac{1}{20918460937500000} a^{28} + \frac{136516}{68115234375} a^{20} - \frac{17731640626}{68115234375} a^{12} + \frac{7154909281}{53551260000} a^{4}$, $\frac{1}{104592304687500000} a^{29} + \frac{136516}{340576171875} a^{21} - \frac{153962109376}{340576171875} a^{13} - \frac{46396350719}{267756300000} a^{5}$, $\frac{1}{522961523437500000} a^{30} + \frac{136516}{1702880859375} a^{22} + \frac{186614062499}{1702880859375} a^{14} + \frac{221359949281}{1338781500000} a^{6}$, $\frac{1}{2614807617187500000} a^{31} + \frac{136516}{8514404296875} a^{23} + \frac{3592375781249}{8514404296875} a^{15} - \frac{2456203050719}{6693907500000} a^{7}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{6693907500000} a^{31} + \frac{23790856319}{6693907500000} a^{7} \) (order $48$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |