Normalized defining polynomial
\( x^{32} - 10 x^{28} + 27 x^{24} + 150 x^{20} - 1215 x^{16} + 2400 x^{12} + 6912 x^{8} - 40960 x^{4} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(97424180758632937220739951448553101324025212174336\)\(\medspace = 2^{72}\cdot 223^{8}\cdot 241^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $36.49$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 223, 241$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{12} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{8} a^{4} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{8} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{3}{16} a^{8} - \frac{3}{16} a^{7} - \frac{1}{2} a^{6} - \frac{5}{16} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{1}{2} a^{8} - \frac{3}{16} a^{7} + \frac{3}{16} a^{6} - \frac{3}{8} a^{5} + \frac{3}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{12} + \frac{1}{8} a^{8} - \frac{1}{2} a^{5} + \frac{7}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{21} - \frac{1}{16} a^{17} - \frac{1}{32} a^{13} + \frac{1}{16} a^{9} - \frac{1}{2} a^{8} + \frac{13}{32} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{22} - \frac{1}{32} a^{18} + \frac{3}{64} a^{14} - \frac{1}{32} a^{10} - \frac{1}{2} a^{7} - \frac{31}{64} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{23} - \frac{1}{64} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{5}{128} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{3}{64} a^{11} + \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{7}{128} a^{7} - \frac{5}{16} a^{6} - \frac{3}{8} a^{5} - \frac{5}{16} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{2048} a^{24} - \frac{1}{256} a^{23} - \frac{1}{64} a^{21} - \frac{29}{1024} a^{20} - \frac{3}{128} a^{19} + \frac{1}{32} a^{17} - \frac{5}{2048} a^{16} + \frac{5}{256} a^{15} - \frac{3}{64} a^{13} - \frac{61}{1024} a^{12} - \frac{3}{128} a^{11} - \frac{7}{32} a^{9} - \frac{223}{2048} a^{8} + \frac{31}{256} a^{7} - \frac{1}{2} a^{6} - \frac{17}{64} a^{5} + \frac{51}{128} a^{4} + \frac{5}{16} a^{3} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{4096} a^{25} - \frac{1}{128} a^{22} - \frac{29}{2048} a^{21} + \frac{1}{64} a^{18} + \frac{251}{4096} a^{17} - \frac{1}{16} a^{15} - \frac{3}{128} a^{14} - \frac{61}{2048} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{7}{64} a^{10} + \frac{801}{4096} a^{9} + \frac{5}{16} a^{8} + \frac{5}{16} a^{7} + \frac{47}{128} a^{6} - \frac{61}{256} a^{5} + \frac{7}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{8192} a^{26} - \frac{1}{256} a^{23} - \frac{29}{4096} a^{22} - \frac{3}{128} a^{19} - \frac{5}{8192} a^{18} - \frac{1}{16} a^{16} - \frac{11}{256} a^{15} - \frac{61}{4096} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{3}{128} a^{11} + \frac{801}{8192} a^{10} + \frac{1}{16} a^{9} - \frac{3}{16} a^{8} + \frac{31}{256} a^{7} + \frac{243}{512} a^{6} + \frac{3}{16} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{32} a^{2} - \frac{1}{4} a$, $\frac{1}{16384} a^{27} - \frac{29}{8192} a^{23} - \frac{1}{32} a^{20} + \frac{507}{16384} a^{19} - \frac{1}{16} a^{16} + \frac{451}{8192} a^{15} + \frac{1}{32} a^{12} - \frac{223}{16384} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{45}{1024} a^{7} - \frac{3}{8} a^{6} + \frac{15}{32} a^{4} - \frac{15}{64} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{294912} a^{28} - \frac{7}{49152} a^{24} - \frac{1}{256} a^{23} + \frac{1225}{98304} a^{20} - \frac{3}{128} a^{19} - \frac{1}{16} a^{17} - \frac{637}{16384} a^{16} + \frac{5}{256} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1607}{32768} a^{12} + \frac{5}{128} a^{11} + \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{193}{1536} a^{8} - \frac{49}{256} a^{7} + \frac{3}{16} a^{6} - \frac{1}{8} a^{5} - \frac{37}{96} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{31}{72}$, $\frac{1}{589824} a^{29} - \frac{7}{98304} a^{25} + \frac{1225}{196608} a^{21} - \frac{1}{32} a^{20} - \frac{1661}{32768} a^{17} - \frac{1}{16} a^{16} - \frac{1607}{65536} a^{13} + \frac{1}{32} a^{12} - \frac{1}{8} a^{10} - \frac{193}{3072} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{19}{192} a^{5} - \frac{1}{32} a^{4} - \frac{1}{8} a^{2} - \frac{31}{144} a - \frac{1}{2}$, $\frac{1}{2359296} a^{30} - \frac{1}{1179648} a^{29} - \frac{1}{32768} a^{27} + \frac{17}{393216} a^{26} + \frac{7}{196608} a^{25} - \frac{1}{4096} a^{24} + \frac{29}{16384} a^{23} - \frac{1559}{786432} a^{22} + \frac{4919}{393216} a^{21} - \frac{35}{2048} a^{20} - \frac{507}{32768} a^{19} - \frac{1701}{131072} a^{18} - \frac{387}{65536} a^{17} - \frac{251}{4096} a^{16} - \frac{451}{16384} a^{15} + \frac{4633}{262144} a^{14} - \frac{441}{131072} a^{13} - \frac{3}{2048} a^{12} - \frac{1825}{32768} a^{11} - \frac{6049}{49152} a^{10} - \frac{1151}{6144} a^{9} - \frac{1825}{4096} a^{8} + \frac{685}{2048} a^{7} - \frac{19}{3072} a^{6} + \frac{1}{384} a^{5} - \frac{11}{256} a^{4} + \frac{7}{128} a^{3} + \frac{133}{288} a^{2} - \frac{41}{288} a - \frac{1}{16}$, $\frac{1}{4718592} a^{31} - \frac{1}{1179648} a^{29} - \frac{1}{589824} a^{28} - \frac{7}{786432} a^{27} - \frac{1}{16384} a^{26} - \frac{17}{196608} a^{25} + \frac{7}{98304} a^{24} - \frac{4919}{1572864} a^{23} - \frac{35}{8192} a^{22} + \frac{1559}{393216} a^{21} + \frac{4919}{196608} a^{20} - \frac{3709}{262144} a^{19} - \frac{251}{16384} a^{18} - \frac{2395}{65536} a^{17} - \frac{387}{32768} a^{16} + \frac{16825}{524288} a^{15} + \frac{381}{8192} a^{14} - \frac{4633}{131072} a^{13} + \frac{3655}{65536} a^{12} + \frac{383}{24576} a^{11} - \frac{1569}{16384} a^{10} + \frac{6049}{24576} a^{9} + \frac{961}{3072} a^{8} + \frac{119}{1536} a^{7} + \frac{421}{1024} a^{6} - \frac{461}{1536} a^{5} - \frac{83}{192} a^{4} - \frac{391}{1152} a^{3} - \frac{25}{64} a^{2} - \frac{61}{144} a + \frac{31}{144}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{559}{294912} a^{29} + \frac{577}{49152} a^{25} + \frac{185}{98304} a^{21} - \frac{4949}{16384} a^{17} + \frac{34025}{32768} a^{13} + \frac{3451}{6144} a^{9} - \frac{4691}{384} a^{5} + \frac{821}{36} a \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 423122700646.94574 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 1536 |
The 80 conjugacy class representatives for t32n96908 are not computed |
Character table for t32n96908 is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
223 | Data not computed | ||||||
241 | Data not computed |