# SageMath code for working with number field 32.0.9572290431813101812896740520288704359886188011817648342612467121075247600488097.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]