Properties

Label 32.0.957...097.1
Degree $32$
Signature $[0, 16]$
Discriminant $9.572\times 10^{78}$
Root discriminant \(293.87\)
Ramified prime $353$
Class number not computed
Class group not computed
Galois group $C_{32}$ (as 32T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483)
 
gp: K = bnfinit(y^32 - y^31 + 6*y^30 - 46*y^29 + 391*y^28 + 717*y^27 + 7428*y^26 + 20280*y^25 + 45840*y^24 - 961862*y^23 - 2081212*y^22 - 1399032*y^21 + 24756306*y^20 + 107460240*y^19 + 836109803*y^18 + 1524157119*y^17 - 267790372*y^16 - 7012926215*y^15 + 38560539181*y^14 + 50727599993*y^13 - 210387899697*y^12 - 610442701949*y^11 + 1209773620966*y^10 + 3197253545113*y^9 - 6473190002488*y^8 - 7464078960084*y^7 + 35665340406463*y^6 - 53074991558346*y^5 + 46767096306383*y^4 - 24811228492420*y^3 + 7674195186138*y^2 - 1554391051686*y + 272803795483, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483)
 

\( x^{32} - x^{31} + 6 x^{30} - 46 x^{29} + 391 x^{28} + 717 x^{27} + 7428 x^{26} + 20280 x^{25} + \cdots + 272803795483 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(9572290431813101812896740520288704359886188011817648342612467121075247600488097\) \(\medspace = 353^{31}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(293.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $353^{31/32}\approx 293.8710101725786$
Ramified primes:   \(353\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{353}) \)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(353\)
Dirichlet character group:    $\lbrace$$\chi_{353}(1,·)$, $\chi_{353}(6,·)$, $\chi_{353}(7,·)$, $\chi_{353}(137,·)$, $\chi_{353}(10,·)$, $\chi_{353}(283,·)$, $\chi_{353}(286,·)$, $\chi_{353}(36,·)$, $\chi_{353}(293,·)$, $\chi_{353}(294,·)$, $\chi_{353}(42,·)$, $\chi_{353}(304,·)$, $\chi_{353}(49,·)$, $\chi_{353}(311,·)$, $\chi_{353}(59,·)$, $\chi_{353}(60,·)$, $\chi_{353}(317,·)$, $\chi_{353}(67,·)$, $\chi_{353}(70,·)$, $\chi_{353}(343,·)$, $\chi_{353}(216,·)$, $\chi_{353}(346,·)$, $\chi_{353}(347,·)$, $\chi_{353}(352,·)$, $\chi_{353}(100,·)$, $\chi_{353}(101,·)$, $\chi_{353}(106,·)$, $\chi_{353}(237,·)$, $\chi_{353}(116,·)$, $\chi_{353}(247,·)$, $\chi_{353}(252,·)$, $\chi_{353}(253,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{2}a^{24}-\frac{1}{2}a^{23}-\frac{1}{2}a^{21}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{25}-\frac{1}{2}a^{23}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{20}-\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{27}-\frac{1}{2}a^{23}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{28}-\frac{1}{2}a^{22}-\frac{1}{2}a^{21}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{14}-\frac{1}{2}a^{5}-\frac{1}{2}$, $\frac{1}{262}a^{29}-\frac{33}{262}a^{28}-\frac{14}{131}a^{27}+\frac{15}{131}a^{25}+\frac{9}{262}a^{24}+\frac{58}{131}a^{23}-\frac{31}{131}a^{22}+\frac{17}{131}a^{21}-\frac{56}{131}a^{20}+\frac{79}{262}a^{19}-\frac{47}{262}a^{18}-\frac{47}{131}a^{17}+\frac{51}{131}a^{16}+\frac{2}{131}a^{15}+\frac{62}{131}a^{14}+\frac{7}{131}a^{13}+\frac{85}{262}a^{12}+\frac{10}{131}a^{11}+\frac{83}{262}a^{10}+\frac{127}{262}a^{9}-\frac{107}{262}a^{8}-\frac{9}{131}a^{7}+\frac{69}{262}a^{6}+\frac{9}{131}a^{5}-\frac{43}{131}a^{4}-\frac{123}{262}a^{3}-\frac{31}{262}a^{2}+\frac{19}{262}a+\frac{60}{131}$, $\frac{1}{262}a^{30}+\frac{31}{131}a^{28}-\frac{7}{262}a^{27}+\frac{15}{131}a^{26}-\frac{49}{262}a^{25}+\frac{10}{131}a^{24}+\frac{49}{131}a^{23}+\frac{42}{131}a^{22}+\frac{93}{262}a^{21}+\frac{51}{262}a^{20}-\frac{30}{131}a^{19}-\frac{73}{262}a^{18}-\frac{59}{131}a^{17}-\frac{18}{131}a^{16}+\frac{125}{262}a^{15}+\frac{45}{262}a^{14}+\frac{23}{262}a^{13}+\frac{37}{131}a^{12}+\frac{44}{131}a^{11}+\frac{115}{262}a^{10}-\frac{54}{131}a^{9}+\frac{119}{262}a^{8}+\frac{65}{131}a^{7}-\frac{63}{262}a^{6}-\frac{8}{131}a^{5}-\frac{79}{262}a^{4}-\frac{29}{262}a^{3}+\frac{22}{131}a^{2}+\frac{46}{131}a+\frac{15}{131}$, $\frac{1}{53\!\cdots\!78}a^{31}-\frac{18\!\cdots\!51}{15\!\cdots\!94}a^{30}+\frac{83\!\cdots\!47}{53\!\cdots\!78}a^{29}+\frac{27\!\cdots\!04}{26\!\cdots\!89}a^{28}-\frac{10\!\cdots\!22}{26\!\cdots\!89}a^{27}-\frac{28\!\cdots\!75}{53\!\cdots\!78}a^{26}-\frac{56\!\cdots\!31}{26\!\cdots\!89}a^{25}-\frac{23\!\cdots\!35}{26\!\cdots\!89}a^{24}+\frac{31\!\cdots\!29}{53\!\cdots\!78}a^{23}+\frac{10\!\cdots\!41}{53\!\cdots\!78}a^{22}-\frac{21\!\cdots\!99}{53\!\cdots\!78}a^{21}-\frac{13\!\cdots\!29}{29\!\cdots\!94}a^{20}+\frac{10\!\cdots\!47}{53\!\cdots\!78}a^{19}-\frac{25\!\cdots\!85}{53\!\cdots\!78}a^{18}-\frac{82\!\cdots\!08}{26\!\cdots\!89}a^{17}-\frac{12\!\cdots\!22}{26\!\cdots\!89}a^{16}+\frac{11\!\cdots\!71}{53\!\cdots\!78}a^{15}+\frac{21\!\cdots\!05}{53\!\cdots\!78}a^{14}-\frac{77\!\cdots\!05}{26\!\cdots\!89}a^{13}+\frac{77\!\cdots\!81}{53\!\cdots\!78}a^{12}-\frac{12\!\cdots\!89}{53\!\cdots\!78}a^{11}-\frac{26\!\cdots\!13}{53\!\cdots\!78}a^{10}-\frac{85\!\cdots\!81}{26\!\cdots\!89}a^{9}-\frac{26\!\cdots\!81}{53\!\cdots\!78}a^{8}-\frac{57\!\cdots\!38}{26\!\cdots\!89}a^{7}-\frac{16\!\cdots\!77}{53\!\cdots\!78}a^{6}-\frac{35\!\cdots\!05}{53\!\cdots\!78}a^{5}+\frac{66\!\cdots\!89}{53\!\cdots\!78}a^{4}+\frac{16\!\cdots\!65}{53\!\cdots\!78}a^{3}-\frac{81\!\cdots\!58}{26\!\cdots\!89}a^{2}-\frac{20\!\cdots\!49}{53\!\cdots\!78}a+\frac{61\!\cdots\!95}{26\!\cdots\!89}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - x^31 + 6*x^30 - 46*x^29 + 391*x^28 + 717*x^27 + 7428*x^26 + 20280*x^25 + 45840*x^24 - 961862*x^23 - 2081212*x^22 - 1399032*x^21 + 24756306*x^20 + 107460240*x^19 + 836109803*x^18 + 1524157119*x^17 - 267790372*x^16 - 7012926215*x^15 + 38560539181*x^14 + 50727599993*x^13 - 210387899697*x^12 - 610442701949*x^11 + 1209773620966*x^10 + 3197253545113*x^9 - 6473190002488*x^8 - 7464078960084*x^7 + 35665340406463*x^6 - 53074991558346*x^5 + 46767096306383*x^4 - 24811228492420*x^3 + 7674195186138*x^2 - 1554391051686*x + 272803795483);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{32}$ (as 32T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 32
The 32 conjugacy class representatives for $C_{32}$
Character table for $C_{32}$

Intermediate fields

\(\Q(\sqrt{353}) \), 4.4.43986977.1, 8.8.683003513396280737.1, 16.16.164672311157017194379126294334593898657.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{4}$ $32$ $32$ $32$ ${\href{/padicField/11.8.0.1}{8} }^{4}$ $32$ ${\href{/padicField/17.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{4}$ $32$ $32$ $16^{2}$ $16^{2}$ $16^{2}$ $32$ $32$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(353\) Copy content Toggle raw display Deg $32$$32$$1$$31$