Normalized defining polynomial
\( x^{32} - 2 x^{31} - 18 x^{30} + 48 x^{29} + 188 x^{28} - 530 x^{27} - 1260 x^{26} + 2484 x^{25} + \cdots + 1263376 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(922280736601273559510361401082691485048147448883056640625\) \(\medspace = 3^{16}\cdot 5^{16}\cdot 7^{16}\cdot 89^{8}\cdot 181^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(60.28\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{1/2}7^{1/2}89^{1/2}181^{1/2}\approx 1300.555650481747$ | ||
Ramified primes: | \(3\), \(5\), \(7\), \(89\), \(181\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{10}a^{14}+\frac{1}{5}a^{13}-\frac{1}{10}a^{12}-\frac{1}{10}a^{11}-\frac{3}{10}a^{10}-\frac{3}{10}a^{9}-\frac{2}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{1}{10}a^{5}-\frac{2}{5}a^{3}+\frac{1}{10}a^{2}+\frac{1}{10}a-\frac{2}{5}$, $\frac{1}{10}a^{15}+\frac{1}{10}a^{12}-\frac{1}{10}a^{11}-\frac{1}{5}a^{10}-\frac{3}{10}a^{9}+\frac{1}{5}a^{8}-\frac{1}{2}a^{7}+\frac{3}{10}a^{6}-\frac{3}{10}a^{5}+\frac{1}{10}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{10}a^{16}+\frac{1}{10}a^{13}-\frac{1}{10}a^{12}-\frac{1}{5}a^{11}-\frac{3}{10}a^{10}+\frac{1}{5}a^{9}-\frac{1}{2}a^{8}+\frac{3}{10}a^{7}-\frac{3}{10}a^{6}+\frac{1}{10}a^{5}+\frac{2}{5}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{10}a^{17}+\frac{1}{5}a^{13}-\frac{1}{10}a^{12}-\frac{1}{5}a^{11}+\frac{3}{10}a^{9}-\frac{3}{10}a^{8}-\frac{1}{5}a^{7}+\frac{3}{10}a^{6}-\frac{1}{10}a^{4}+\frac{3}{10}a^{3}+\frac{1}{5}a^{2}-\frac{1}{10}a+\frac{2}{5}$, $\frac{1}{10}a^{18}+\frac{1}{5}a^{11}+\frac{2}{5}a^{10}-\frac{1}{5}a^{9}-\frac{2}{5}a^{8}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{4}-\frac{1}{2}a^{3}+\frac{1}{5}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{10}a^{19}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{2}{5}a^{9}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{1}{2}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{10}a^{20}+\frac{1}{5}a^{13}-\frac{1}{10}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{10}-\frac{1}{2}a^{9}-\frac{1}{10}a^{8}-\frac{2}{5}a^{7}+\frac{3}{10}a^{6}-\frac{1}{2}a^{5}-\frac{3}{10}a^{4}-\frac{3}{10}a^{3}+\frac{3}{10}a^{2}-\frac{1}{2}a$, $\frac{1}{10}a^{21}-\frac{1}{5}a^{11}-\frac{2}{5}a^{10}+\frac{2}{5}a^{8}-\frac{1}{10}a^{6}+\frac{2}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{10}a^{22}-\frac{1}{5}a^{12}-\frac{2}{5}a^{11}+\frac{2}{5}a^{9}-\frac{1}{10}a^{7}+\frac{2}{5}a^{6}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{10}a^{23}-\frac{1}{5}a^{13}+\frac{1}{10}a^{12}+\frac{2}{5}a^{10}-\frac{1}{2}a^{9}+\frac{2}{5}a^{8}+\frac{2}{5}a^{7}-\frac{3}{10}a^{6}-\frac{2}{5}a^{5}+\frac{3}{10}a^{4}+\frac{3}{10}a^{3}+\frac{3}{10}a^{2}-\frac{1}{2}a$, $\frac{1}{1500}a^{24}+\frac{11}{250}a^{23}-\frac{17}{750}a^{22}-\frac{7}{150}a^{21}+\frac{16}{375}a^{20}+\frac{2}{375}a^{19}-\frac{7}{300}a^{18}-\frac{6}{125}a^{17}+\frac{13}{1500}a^{16}-\frac{4}{125}a^{15}-\frac{1}{375}a^{14}-\frac{37}{375}a^{13}-\frac{61}{1500}a^{12}+\frac{8}{375}a^{11}+\frac{7}{30}a^{10}+\frac{83}{750}a^{9}+\frac{607}{1500}a^{8}-\frac{89}{250}a^{7}-\frac{523}{1500}a^{6}+\frac{37}{750}a^{5}+\frac{127}{500}a^{4}-\frac{19}{150}a^{3}-\frac{229}{500}a^{2}-\frac{169}{375}a+\frac{109}{375}$, $\frac{1}{1500}a^{25}-\frac{2}{75}a^{23}+\frac{37}{750}a^{22}+\frac{17}{750}a^{21}-\frac{4}{375}a^{20}+\frac{37}{1500}a^{19}-\frac{1}{125}a^{18}-\frac{7}{300}a^{17}-\frac{1}{250}a^{16}+\frac{7}{750}a^{15}-\frac{17}{750}a^{14}-\frac{343}{1500}a^{13}+\frac{2}{375}a^{12}+\frac{19}{750}a^{11}-\frac{67}{750}a^{10}+\frac{151}{1500}a^{9}+\frac{17}{125}a^{8}+\frac{521}{1500}a^{7}+\frac{121}{750}a^{6}-\frac{51}{500}a^{5}-\frac{143}{750}a^{4}+\frac{1}{500}a^{3}-\frac{121}{375}a^{2}+\frac{88}{375}a-\frac{23}{125}$, $\frac{1}{1500}a^{26}+\frac{7}{750}a^{23}+\frac{2}{125}a^{22}+\frac{17}{750}a^{21}+\frac{47}{1500}a^{20}+\frac{2}{375}a^{19}+\frac{13}{300}a^{18}-\frac{3}{125}a^{17}-\frac{11}{250}a^{16}-\frac{1}{375}a^{15}-\frac{53}{1500}a^{14}-\frac{181}{750}a^{13}+\frac{37}{375}a^{12}+\frac{91}{250}a^{11}+\frac{17}{500}a^{10}-\frac{164}{375}a^{9}-\frac{83}{500}a^{8}+\frac{8}{375}a^{7}+\frac{677}{1500}a^{6}+\frac{137}{750}a^{5}-\frac{69}{500}a^{4}-\frac{146}{375}a^{3}+\frac{43}{375}a^{2}-\frac{4}{375}a-\frac{28}{75}$, $\frac{1}{3000}a^{27}-\frac{1}{3000}a^{26}-\frac{1}{3000}a^{25}+\frac{13}{1500}a^{23}-\frac{19}{1500}a^{22}+\frac{59}{3000}a^{21}-\frac{19}{3000}a^{20}+\frac{29}{1500}a^{19}+\frac{101}{3000}a^{18}+\frac{113}{3000}a^{17}+\frac{3}{250}a^{16}+\frac{3}{1000}a^{15}-\frac{23}{1000}a^{14}+\frac{1}{40}a^{13}+\frac{97}{1500}a^{12}-\frac{77}{1000}a^{11}+\frac{1427}{3000}a^{10}+\frac{83}{750}a^{9}+\frac{93}{1000}a^{8}-\frac{1}{6}a^{7}+\frac{977}{3000}a^{6}+\frac{92}{375}a^{5}+\frac{23}{120}a^{4}+\frac{863}{3000}a^{3}+\frac{7}{1500}a^{2}-\frac{43}{125}a-\frac{57}{125}$, $\frac{1}{9000}a^{28}-\frac{1}{9000}a^{27}-\frac{1}{9000}a^{26}-\frac{1}{4500}a^{25}+\frac{71}{1500}a^{23}-\frac{9}{200}a^{22}-\frac{367}{9000}a^{21}-\frac{187}{4500}a^{20}-\frac{181}{9000}a^{19}+\frac{49}{3000}a^{18}-\frac{211}{4500}a^{17}-\frac{17}{9000}a^{16}-\frac{349}{9000}a^{15}-\frac{53}{9000}a^{14}-\frac{28}{375}a^{13}-\frac{1961}{9000}a^{12}-\frac{227}{3000}a^{11}-\frac{8}{45}a^{10}-\frac{1039}{9000}a^{9}-\frac{289}{900}a^{8}-\frac{3881}{9000}a^{7}+\frac{7}{180}a^{6}-\frac{4043}{9000}a^{5}-\frac{4271}{9000}a^{4}+\frac{37}{2250}a^{3}-\frac{701}{4500}a^{2}-\frac{61}{250}a-\frac{523}{1125}$, $\frac{1}{9000}a^{29}+\frac{1}{9000}a^{27}+\frac{1}{9000}a^{25}-\frac{91}{3000}a^{23}-\frac{107}{4500}a^{22}-\frac{1}{250}a^{21}+\frac{7}{300}a^{20}-\frac{149}{4500}a^{19}-\frac{11}{2250}a^{18}+\frac{223}{4500}a^{17}+\frac{1}{125}a^{16}+\frac{37}{1000}a^{15}+\frac{1}{36}a^{14}-\frac{119}{900}a^{13}-\frac{169}{4500}a^{12}-\frac{2051}{4500}a^{11}+\frac{361}{2250}a^{10}-\frac{1079}{9000}a^{9}+\frac{719}{1500}a^{8}+\frac{257}{3000}a^{7}-\frac{5}{12}a^{6}-\frac{901}{2250}a^{5}+\frac{2119}{4500}a^{4}-\frac{437}{3000}a^{3}+\frac{1867}{4500}a^{2}+\frac{77}{1125}a+\frac{19}{225}$, $\frac{1}{45\!\cdots\!00}a^{30}-\frac{190413524354407}{45\!\cdots\!00}a^{29}+\frac{28121644336019}{51\!\cdots\!00}a^{28}-\frac{233612670436043}{15\!\cdots\!00}a^{27}+\frac{11\!\cdots\!87}{45\!\cdots\!00}a^{26}-\frac{11639488676275}{36\!\cdots\!48}a^{25}-\frac{31453841019987}{10\!\cdots\!00}a^{24}-\frac{70\!\cdots\!51}{45\!\cdots\!00}a^{23}-\frac{27\!\cdots\!01}{57\!\cdots\!00}a^{22}-\frac{69\!\cdots\!37}{22\!\cdots\!00}a^{21}-\frac{36\!\cdots\!99}{22\!\cdots\!00}a^{20}+\frac{18\!\cdots\!52}{47\!\cdots\!75}a^{19}+\frac{10\!\cdots\!41}{22\!\cdots\!00}a^{18}+\frac{19\!\cdots\!69}{76\!\cdots\!00}a^{17}-\frac{13\!\cdots\!63}{45\!\cdots\!00}a^{16}-\frac{16\!\cdots\!99}{45\!\cdots\!00}a^{15}-\frac{95\!\cdots\!93}{22\!\cdots\!00}a^{14}+\frac{2912905951861}{246428777526600}a^{13}-\frac{18\!\cdots\!31}{95\!\cdots\!75}a^{12}-\frac{45\!\cdots\!11}{22\!\cdots\!80}a^{11}-\frac{16\!\cdots\!67}{45\!\cdots\!00}a^{10}-\frac{35\!\cdots\!01}{15\!\cdots\!00}a^{9}+\frac{24\!\cdots\!51}{91\!\cdots\!00}a^{8}-\frac{76\!\cdots\!41}{45\!\cdots\!00}a^{7}+\frac{10\!\cdots\!63}{38\!\cdots\!00}a^{6}+\frac{54\!\cdots\!91}{14\!\cdots\!25}a^{5}+\frac{59\!\cdots\!67}{51\!\cdots\!00}a^{4}-\frac{45\!\cdots\!01}{45\!\cdots\!00}a^{3}+\frac{91\!\cdots\!13}{31\!\cdots\!50}a^{2}-\frac{31\!\cdots\!19}{12\!\cdots\!00}a+\frac{85\!\cdots\!83}{57\!\cdots\!00}$, $\frac{1}{41\!\cdots\!00}a^{31}+\frac{13\!\cdots\!17}{20\!\cdots\!00}a^{30}+\frac{89\!\cdots\!27}{20\!\cdots\!00}a^{29}-\frac{50\!\cdots\!93}{11\!\cdots\!00}a^{28}-\frac{29\!\cdots\!01}{10\!\cdots\!00}a^{27}+\frac{34\!\cdots\!67}{20\!\cdots\!00}a^{26}-\frac{16\!\cdots\!42}{64\!\cdots\!25}a^{25}+\frac{17\!\cdots\!59}{10\!\cdots\!00}a^{24}-\frac{56\!\cdots\!89}{41\!\cdots\!00}a^{23}+\frac{11\!\cdots\!53}{57\!\cdots\!00}a^{22}-\frac{73\!\cdots\!81}{17\!\cdots\!00}a^{21}-\frac{22\!\cdots\!01}{51\!\cdots\!00}a^{20}+\frac{44\!\cdots\!31}{20\!\cdots\!00}a^{19}+\frac{10\!\cdots\!57}{10\!\cdots\!00}a^{18}+\frac{13\!\cdots\!39}{41\!\cdots\!00}a^{17}+\frac{35\!\cdots\!93}{34\!\cdots\!00}a^{16}+\frac{40\!\cdots\!99}{13\!\cdots\!00}a^{15}-\frac{78\!\cdots\!29}{82\!\cdots\!20}a^{14}-\frac{12\!\cdots\!53}{57\!\cdots\!00}a^{13}-\frac{17\!\cdots\!29}{10\!\cdots\!00}a^{12}+\frac{92\!\cdots\!09}{41\!\cdots\!00}a^{11}+\frac{34\!\cdots\!41}{10\!\cdots\!00}a^{10}-\frac{66\!\cdots\!13}{20\!\cdots\!00}a^{9}-\frac{18\!\cdots\!73}{10\!\cdots\!00}a^{8}+\frac{13\!\cdots\!37}{41\!\cdots\!00}a^{7}-\frac{22\!\cdots\!73}{51\!\cdots\!00}a^{6}+\frac{24\!\cdots\!63}{82\!\cdots\!00}a^{5}+\frac{67\!\cdots\!99}{10\!\cdots\!00}a^{4}+\frac{81\!\cdots\!61}{41\!\cdots\!00}a^{3}+\frac{69\!\cdots\!51}{17\!\cdots\!00}a^{2}-\frac{43\!\cdots\!31}{12\!\cdots\!50}a-\frac{70\!\cdots\!51}{36\!\cdots\!00}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{15}\times C_{90}$, which has order $1350$ (assuming GRH)
Relative class number: $1350$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{450163697425760880779524030957491196682854521538384832410206051771}{1437068431089313809544720927037959930241091771281628505251566266813284160} a^{31} + \frac{1820218869054011864390747872851095826259572175311225657640192107151}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{30} + \frac{5647888568392672300322209604672922419748110592518791264667005798477}{1077801323316985357158540695278469947680818828461221378938674700109963120} a^{29} - \frac{13372541088171430968439634567497597944932463392748478729583367251737}{718534215544656904772360463518979965120545885640814252625783133406642080} a^{28} - \frac{35934011253547493172205466890911637203547290845871374725823136674593}{718534215544656904772360463518979965120545885640814252625783133406642080} a^{27} + \frac{108596853473618308379249097413482101463065708070735886433188344865411}{538900661658492678579270347639234973840409414230610689469337350054981560} a^{26} + \frac{662724316304334716028237968723352613727425038380274717813255585497461}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{25} - \frac{718783813530073199462562304399726048324163070076283489001528172550479}{718534215544656904772360463518979965120545885640814252625783133406642080} a^{24} - \frac{12034352431650946735438734361582208336994025339005363645006299791098569}{4311205293267941428634162781113879790723275313844885515754698800439852480} a^{23} + \frac{2956429138588707755065829120120162911829392250884036701923194443575797}{538900661658492678579270347639234973840409414230610689469337350054981560} a^{22} + \frac{10740791375007903597770731065002478622333090148653036767674137845986479}{538900661658492678579270347639234973840409414230610689469337350054981560} a^{21} - \frac{19306731823578801823857101323408872000439439476467444494662757263892639}{538900661658492678579270347639234973840409414230610689469337350054981560} a^{20} - \frac{9748488850499688245256437409187440444037152581172638945378849406857737}{143706843108931380954472092703795993024109177128162850525156626681328416} a^{19} + \frac{8485637865652121866382318230646214243034912060234285726317692974513973}{107780132331698535715854069527846994768081882846122137893867470010996312} a^{18} + \frac{246077816151339319216553861123907733396097034298731837601370848483970439}{1437068431089313809544720927037959930241091771281628505251566266813284160} a^{17} + \frac{220679655542444083439654936977538527756182462899141667948315551974009883}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{16} - \frac{3075990168527976101648786388799057270198545586867503577180983044412433571}{4311205293267941428634162781113879790723275313844885515754698800439852480} a^{15} + \frac{2026270966382314353079642106082098466820097040351114023391347466211863119}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{14} - \frac{406342601555166647123577838824666867670561756504902988987391398430862373}{179633553886164226193090115879744991280136471410203563156445783351660520} a^{13} + \frac{230628657296495615678385482810260960244324420030464724608547546195249831}{71853421554465690477236046351897996512054588564081425262578313340664208} a^{12} - \frac{12992105993612188822954384169163776413330418035057138678040264018398389533}{4311205293267941428634162781113879790723275313844885515754698800439852480} a^{11} + \frac{11095155313597226675530424576596992228801057081819936070246069629421176559}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{10} - \frac{2039605385217988170128521866557110462313921858785977027645414939458868481}{359267107772328452386180231759489982560272942820407126312891566703321040} a^{9} + \frac{3376294371362596023492488081659918661110326416334601843110245308809201229}{2155602646633970714317081390556939895361637656922442757877349400219926240} a^{8} - \frac{8525541355431226854170085162075387727922677147374518070199989833612869379}{4311205293267941428634162781113879790723275313844885515754698800439852480} a^{7} + \frac{152187863266492059563745559431468023613101922855100247880971940446422481}{35926710777232845238618023175948998256027294282040712631289156670332104} a^{6} + \frac{1112828320921145821881112065493284684332188297228465563561745135929853097}{862241058653588285726832556222775958144655062768977103150939760087970496} a^{5} + \frac{343894084561653102519815766443133282740455851115524678096666646178461407}{718534215544656904772360463518979965120545885640814252625783133406642080} a^{4} - \frac{2399541433922085353256942731624726302792581554874611187024944035186431763}{4311205293267941428634162781113879790723275313844885515754698800439852480} a^{3} - \frac{194397123854938639901719594073275379296585938426580654442707949437177411}{179633553886164226193090115879744991280136471410203563156445783351660520} a^{2} - \frac{66583452427092993031248597202653040401139755101291115469304657471087031}{89816776943082113096545057939872495640068235705101781578222891675830260} a - \frac{222185920716246897676828105836675140305780963863019261859135584226399}{383559189792521479415850781237889661096376807281573444462161814985752} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{37\!\cdots\!87}{46\!\cdots\!00}a^{31}-\frac{26\!\cdots\!51}{77\!\cdots\!00}a^{30}-\frac{38\!\cdots\!33}{46\!\cdots\!40}a^{29}+\frac{51\!\cdots\!23}{77\!\cdots\!00}a^{28}+\frac{41\!\cdots\!21}{23\!\cdots\!00}a^{27}-\frac{31\!\cdots\!04}{48\!\cdots\!75}a^{26}+\frac{34\!\cdots\!59}{77\!\cdots\!00}a^{25}+\frac{68\!\cdots\!91}{23\!\cdots\!00}a^{24}-\frac{29\!\cdots\!07}{15\!\cdots\!00}a^{23}-\frac{40\!\cdots\!71}{19\!\cdots\!00}a^{22}-\frac{68\!\cdots\!89}{11\!\cdots\!00}a^{21}+\frac{91\!\cdots\!03}{58\!\cdots\!00}a^{20}-\frac{29\!\cdots\!39}{23\!\cdots\!00}a^{19}-\frac{76\!\cdots\!73}{19\!\cdots\!00}a^{18}+\frac{87\!\cdots\!19}{15\!\cdots\!00}a^{17}+\frac{13\!\cdots\!91}{46\!\cdots\!00}a^{16}+\frac{30\!\cdots\!81}{46\!\cdots\!00}a^{15}-\frac{14\!\cdots\!81}{23\!\cdots\!00}a^{14}+\frac{29\!\cdots\!51}{23\!\cdots\!20}a^{13}-\frac{86\!\cdots\!51}{46\!\cdots\!40}a^{12}+\frac{22\!\cdots\!83}{93\!\cdots\!00}a^{11}-\frac{16\!\cdots\!27}{77\!\cdots\!00}a^{10}+\frac{81\!\cdots\!57}{38\!\cdots\!00}a^{9}-\frac{17\!\cdots\!61}{77\!\cdots\!00}a^{8}+\frac{23\!\cdots\!61}{46\!\cdots\!00}a^{7}+\frac{11\!\cdots\!51}{11\!\cdots\!00}a^{6}+\frac{87\!\cdots\!87}{15\!\cdots\!00}a^{5}+\frac{79\!\cdots\!09}{23\!\cdots\!00}a^{4}-\frac{11\!\cdots\!71}{46\!\cdots\!00}a^{3}+\frac{82\!\cdots\!57}{58\!\cdots\!00}a^{2}-\frac{10\!\cdots\!51}{32\!\cdots\!00}a-\frac{68\!\cdots\!17}{19\!\cdots\!00}$, $\frac{42\!\cdots\!73}{82\!\cdots\!00}a^{31}-\frac{69\!\cdots\!57}{13\!\cdots\!00}a^{30}-\frac{75\!\cdots\!07}{20\!\cdots\!00}a^{29}+\frac{14\!\cdots\!69}{13\!\cdots\!00}a^{28}-\frac{45\!\cdots\!21}{82\!\cdots\!20}a^{27}-\frac{16\!\cdots\!73}{14\!\cdots\!25}a^{26}+\frac{15\!\cdots\!37}{13\!\cdots\!00}a^{25}+\frac{32\!\cdots\!29}{41\!\cdots\!00}a^{24}-\frac{79\!\cdots\!89}{27\!\cdots\!00}a^{23}-\frac{76\!\cdots\!14}{14\!\cdots\!25}a^{22}-\frac{52\!\cdots\!97}{10\!\cdots\!00}a^{21}+\frac{18\!\cdots\!87}{51\!\cdots\!70}a^{20}-\frac{39\!\cdots\!53}{82\!\cdots\!20}a^{19}-\frac{47\!\cdots\!43}{34\!\cdots\!00}a^{18}-\frac{19\!\cdots\!51}{27\!\cdots\!00}a^{17}+\frac{10\!\cdots\!57}{41\!\cdots\!00}a^{16}+\frac{26\!\cdots\!43}{82\!\cdots\!00}a^{15}-\frac{31\!\cdots\!59}{41\!\cdots\!00}a^{14}+\frac{41\!\cdots\!29}{51\!\cdots\!00}a^{13}-\frac{32\!\cdots\!51}{20\!\cdots\!00}a^{12}+\frac{35\!\cdots\!93}{82\!\cdots\!00}a^{11}+\frac{59\!\cdots\!91}{13\!\cdots\!00}a^{10}+\frac{15\!\cdots\!53}{68\!\cdots\!00}a^{9}-\frac{33\!\cdots\!91}{13\!\cdots\!00}a^{8}-\frac{95\!\cdots\!49}{82\!\cdots\!00}a^{7}-\frac{16\!\cdots\!53}{51\!\cdots\!00}a^{6}+\frac{82\!\cdots\!53}{27\!\cdots\!00}a^{5}+\frac{91\!\cdots\!59}{41\!\cdots\!00}a^{4}+\frac{54\!\cdots\!59}{82\!\cdots\!00}a^{3}-\frac{53\!\cdots\!23}{10\!\cdots\!00}a^{2}-\frac{54\!\cdots\!83}{57\!\cdots\!00}a+\frac{34\!\cdots\!91}{16\!\cdots\!64}$, $\frac{20\!\cdots\!23}{20\!\cdots\!00}a^{31}-\frac{16\!\cdots\!63}{68\!\cdots\!00}a^{30}-\frac{68\!\cdots\!99}{41\!\cdots\!00}a^{29}+\frac{21\!\cdots\!13}{41\!\cdots\!00}a^{28}+\frac{11\!\cdots\!47}{68\!\cdots\!00}a^{27}-\frac{11\!\cdots\!81}{20\!\cdots\!00}a^{26}-\frac{23\!\cdots\!49}{22\!\cdots\!00}a^{25}+\frac{53\!\cdots\!47}{20\!\cdots\!00}a^{24}+\frac{14\!\cdots\!33}{17\!\cdots\!00}a^{23}-\frac{34\!\cdots\!51}{25\!\cdots\!00}a^{22}-\frac{69\!\cdots\!33}{11\!\cdots\!00}a^{21}+\frac{15\!\cdots\!01}{17\!\cdots\!00}a^{20}+\frac{20\!\cdots\!37}{10\!\cdots\!00}a^{19}-\frac{16\!\cdots\!03}{10\!\cdots\!00}a^{18}-\frac{88\!\cdots\!41}{20\!\cdots\!00}a^{17}-\frac{10\!\cdots\!09}{22\!\cdots\!00}a^{16}+\frac{18\!\cdots\!71}{10\!\cdots\!00}a^{15}-\frac{13\!\cdots\!29}{51\!\cdots\!00}a^{14}+\frac{11\!\cdots\!43}{17\!\cdots\!00}a^{13}-\frac{47\!\cdots\!81}{51\!\cdots\!00}a^{12}+\frac{62\!\cdots\!29}{68\!\cdots\!00}a^{11}-\frac{28\!\cdots\!93}{20\!\cdots\!00}a^{10}+\frac{27\!\cdots\!77}{20\!\cdots\!00}a^{9}-\frac{61\!\cdots\!99}{20\!\cdots\!00}a^{8}+\frac{35\!\cdots\!39}{51\!\cdots\!00}a^{7}-\frac{52\!\cdots\!09}{57\!\cdots\!00}a^{6}-\frac{81\!\cdots\!31}{20\!\cdots\!00}a^{5}+\frac{14\!\cdots\!13}{22\!\cdots\!00}a^{4}+\frac{47\!\cdots\!09}{86\!\cdots\!00}a^{3}+\frac{25\!\cdots\!94}{12\!\cdots\!25}a^{2}-\frac{35\!\cdots\!11}{25\!\cdots\!00}a+\frac{22\!\cdots\!32}{76\!\cdots\!75}$, $\frac{38\!\cdots\!23}{82\!\cdots\!00}a^{31}-\frac{39\!\cdots\!59}{45\!\cdots\!00}a^{30}-\frac{11\!\cdots\!93}{12\!\cdots\!50}a^{29}+\frac{43\!\cdots\!27}{20\!\cdots\!00}a^{28}+\frac{64\!\cdots\!61}{68\!\cdots\!00}a^{27}-\frac{95\!\cdots\!53}{41\!\cdots\!60}a^{26}-\frac{15\!\cdots\!49}{22\!\cdots\!00}a^{25}+\frac{42\!\cdots\!53}{41\!\cdots\!00}a^{24}+\frac{22\!\cdots\!47}{45\!\cdots\!00}a^{23}-\frac{11\!\cdots\!17}{25\!\cdots\!00}a^{22}-\frac{28\!\cdots\!67}{86\!\cdots\!00}a^{21}+\frac{50\!\cdots\!23}{17\!\cdots\!00}a^{20}+\frac{26\!\cdots\!69}{20\!\cdots\!00}a^{19}-\frac{18\!\cdots\!21}{51\!\cdots\!00}a^{18}-\frac{11\!\cdots\!71}{41\!\cdots\!00}a^{17}-\frac{20\!\cdots\!97}{68\!\cdots\!00}a^{16}+\frac{34\!\cdots\!97}{41\!\cdots\!00}a^{15}-\frac{17\!\cdots\!49}{20\!\cdots\!00}a^{14}+\frac{13\!\cdots\!89}{57\!\cdots\!00}a^{13}-\frac{24\!\cdots\!17}{10\!\cdots\!00}a^{12}+\frac{23\!\cdots\!77}{13\!\cdots\!00}a^{11}-\frac{93\!\cdots\!27}{20\!\cdots\!00}a^{10}+\frac{22\!\cdots\!41}{51\!\cdots\!00}a^{9}+\frac{39\!\cdots\!91}{20\!\cdots\!00}a^{8}+\frac{62\!\cdots\!13}{41\!\cdots\!00}a^{7}-\frac{12\!\cdots\!41}{57\!\cdots\!00}a^{6}-\frac{22\!\cdots\!71}{41\!\cdots\!00}a^{5}+\frac{24\!\cdots\!77}{27\!\cdots\!40}a^{4}+\frac{11\!\cdots\!63}{27\!\cdots\!00}a^{3}+\frac{53\!\cdots\!47}{20\!\cdots\!80}a^{2}+\frac{19\!\cdots\!59}{25\!\cdots\!00}a-\frac{53\!\cdots\!13}{61\!\cdots\!00}$, $\frac{20\!\cdots\!23}{28\!\cdots\!00}a^{31}-\frac{38\!\cdots\!37}{14\!\cdots\!00}a^{30}-\frac{27\!\cdots\!79}{21\!\cdots\!00}a^{29}+\frac{27\!\cdots\!27}{42\!\cdots\!00}a^{28}+\frac{50\!\cdots\!47}{42\!\cdots\!00}a^{27}-\frac{10\!\cdots\!82}{13\!\cdots\!25}a^{26}-\frac{18\!\cdots\!23}{28\!\cdots\!00}a^{25}+\frac{73\!\cdots\!11}{14\!\cdots\!00}a^{24}+\frac{17\!\cdots\!87}{28\!\cdots\!00}a^{23}-\frac{32\!\cdots\!27}{10\!\cdots\!00}a^{22}-\frac{57\!\cdots\!07}{10\!\cdots\!00}a^{21}+\frac{20\!\cdots\!81}{10\!\cdots\!00}a^{20}+\frac{66\!\cdots\!13}{28\!\cdots\!00}a^{19}-\frac{82\!\cdots\!57}{10\!\cdots\!00}a^{18}-\frac{60\!\cdots\!89}{84\!\cdots\!00}a^{17}+\frac{23\!\cdots\!81}{16\!\cdots\!20}a^{16}+\frac{23\!\cdots\!23}{84\!\cdots\!00}a^{15}-\frac{61\!\cdots\!41}{14\!\cdots\!00}a^{14}+\frac{26\!\cdots\!17}{10\!\cdots\!00}a^{13}-\frac{48\!\cdots\!93}{46\!\cdots\!00}a^{12}-\frac{70\!\cdots\!23}{84\!\cdots\!00}a^{11}+\frac{20\!\cdots\!21}{42\!\cdots\!00}a^{10}+\frac{32\!\cdots\!41}{21\!\cdots\!00}a^{9}-\frac{83\!\cdots\!81}{16\!\cdots\!20}a^{8}-\frac{12\!\cdots\!29}{84\!\cdots\!00}a^{7}-\frac{10\!\cdots\!63}{10\!\cdots\!00}a^{6}+\frac{45\!\cdots\!51}{84\!\cdots\!00}a^{5}+\frac{52\!\cdots\!23}{42\!\cdots\!00}a^{4}+\frac{36\!\cdots\!03}{84\!\cdots\!00}a^{3}+\frac{82\!\cdots\!49}{14\!\cdots\!60}a^{2}+\frac{75\!\cdots\!27}{10\!\cdots\!00}a+\frac{13\!\cdots\!01}{35\!\cdots\!00}$, $\frac{91\!\cdots\!07}{41\!\cdots\!60}a^{31}-\frac{34\!\cdots\!89}{34\!\cdots\!00}a^{30}-\frac{14\!\cdots\!71}{68\!\cdots\!00}a^{29}+\frac{22\!\cdots\!71}{11\!\cdots\!00}a^{28}+\frac{52\!\cdots\!29}{34\!\cdots\!00}a^{27}-\frac{63\!\cdots\!37}{34\!\cdots\!00}a^{26}+\frac{17\!\cdots\!17}{10\!\cdots\!00}a^{25}+\frac{85\!\cdots\!61}{10\!\cdots\!00}a^{24}-\frac{47\!\cdots\!93}{17\!\cdots\!00}a^{23}-\frac{76\!\cdots\!83}{12\!\cdots\!50}a^{22}-\frac{55\!\cdots\!89}{12\!\cdots\!50}a^{21}+\frac{57\!\cdots\!51}{12\!\cdots\!50}a^{20}-\frac{15\!\cdots\!37}{34\!\cdots\!00}a^{19}-\frac{52\!\cdots\!03}{51\!\cdots\!00}a^{18}+\frac{19\!\cdots\!03}{10\!\cdots\!00}a^{17}-\frac{11\!\cdots\!27}{10\!\cdots\!00}a^{16}+\frac{20\!\cdots\!37}{12\!\cdots\!50}a^{15}-\frac{13\!\cdots\!29}{86\!\cdots\!00}a^{14}+\frac{25\!\cdots\!83}{64\!\cdots\!25}a^{13}-\frac{17\!\cdots\!89}{28\!\cdots\!00}a^{12}+\frac{67\!\cdots\!59}{10\!\cdots\!00}a^{11}-\frac{47\!\cdots\!99}{10\!\cdots\!00}a^{10}+\frac{25\!\cdots\!71}{10\!\cdots\!00}a^{9}-\frac{37\!\cdots\!19}{34\!\cdots\!00}a^{8}-\frac{11\!\cdots\!37}{51\!\cdots\!00}a^{7}+\frac{40\!\cdots\!03}{64\!\cdots\!25}a^{6}-\frac{39\!\cdots\!27}{10\!\cdots\!00}a^{5}+\frac{34\!\cdots\!33}{34\!\cdots\!00}a^{4}-\frac{15\!\cdots\!77}{10\!\cdots\!00}a^{3}+\frac{31\!\cdots\!06}{25\!\cdots\!85}a^{2}+\frac{16\!\cdots\!59}{12\!\cdots\!50}a-\frac{45\!\cdots\!06}{45\!\cdots\!25}$, $\frac{78\!\cdots\!91}{41\!\cdots\!00}a^{31}-\frac{11\!\cdots\!11}{20\!\cdots\!00}a^{30}-\frac{51\!\cdots\!81}{17\!\cdots\!00}a^{29}+\frac{27\!\cdots\!47}{22\!\cdots\!00}a^{28}+\frac{54\!\cdots\!87}{20\!\cdots\!00}a^{27}-\frac{26\!\cdots\!23}{20\!\cdots\!00}a^{26}-\frac{56\!\cdots\!97}{41\!\cdots\!00}a^{25}+\frac{26\!\cdots\!61}{41\!\cdots\!00}a^{24}+\frac{57\!\cdots\!31}{41\!\cdots\!00}a^{23}-\frac{19\!\cdots\!07}{51\!\cdots\!00}a^{22}-\frac{88\!\cdots\!53}{86\!\cdots\!00}a^{21}+\frac{16\!\cdots\!79}{64\!\cdots\!25}a^{20}+\frac{61\!\cdots\!37}{20\!\cdots\!00}a^{19}-\frac{31\!\cdots\!29}{51\!\cdots\!00}a^{18}-\frac{17\!\cdots\!77}{27\!\cdots\!00}a^{17}-\frac{53\!\cdots\!79}{22\!\cdots\!00}a^{16}+\frac{52\!\cdots\!03}{13\!\cdots\!00}a^{15}-\frac{50\!\cdots\!31}{68\!\cdots\!00}a^{14}+\frac{10\!\cdots\!51}{64\!\cdots\!25}a^{13}-\frac{46\!\cdots\!71}{20\!\cdots\!00}a^{12}+\frac{30\!\cdots\!13}{13\!\cdots\!00}a^{11}-\frac{61\!\cdots\!87}{20\!\cdots\!00}a^{10}+\frac{31\!\cdots\!39}{86\!\cdots\!00}a^{9}-\frac{39\!\cdots\!21}{20\!\cdots\!00}a^{8}+\frac{64\!\cdots\!21}{41\!\cdots\!00}a^{7}-\frac{58\!\cdots\!71}{25\!\cdots\!00}a^{6}+\frac{39\!\cdots\!09}{41\!\cdots\!00}a^{5}+\frac{77\!\cdots\!11}{20\!\cdots\!00}a^{4}-\frac{86\!\cdots\!83}{41\!\cdots\!00}a^{3}+\frac{32\!\cdots\!37}{51\!\cdots\!00}a^{2}-\frac{18\!\cdots\!03}{86\!\cdots\!00}a+\frac{92\!\cdots\!41}{18\!\cdots\!00}$, $\frac{46\!\cdots\!39}{14\!\cdots\!00}a^{31}-\frac{52\!\cdots\!19}{48\!\cdots\!00}a^{30}-\frac{15\!\cdots\!11}{36\!\cdots\!00}a^{29}-\frac{13\!\cdots\!23}{14\!\cdots\!00}a^{28}+\frac{19\!\cdots\!83}{48\!\cdots\!00}a^{27}+\frac{64\!\cdots\!01}{91\!\cdots\!00}a^{26}-\frac{14\!\cdots\!39}{73\!\cdots\!00}a^{25}-\frac{97\!\cdots\!81}{73\!\cdots\!00}a^{24}+\frac{53\!\cdots\!81}{48\!\cdots\!00}a^{23}+\frac{84\!\cdots\!77}{10\!\cdots\!00}a^{22}-\frac{56\!\cdots\!91}{22\!\cdots\!25}a^{21}-\frac{81\!\cdots\!89}{18\!\cdots\!00}a^{20}-\frac{39\!\cdots\!63}{73\!\cdots\!00}a^{19}+\frac{87\!\cdots\!09}{30\!\cdots\!00}a^{18}+\frac{56\!\cdots\!73}{14\!\cdots\!00}a^{17}-\frac{57\!\cdots\!13}{73\!\cdots\!00}a^{16}-\frac{42\!\cdots\!37}{48\!\cdots\!00}a^{15}-\frac{62\!\cdots\!29}{73\!\cdots\!00}a^{14}+\frac{72\!\cdots\!39}{18\!\cdots\!00}a^{13}-\frac{35\!\cdots\!37}{73\!\cdots\!00}a^{12}+\frac{17\!\cdots\!67}{14\!\cdots\!00}a^{11}-\frac{76\!\cdots\!41}{73\!\cdots\!00}a^{10}+\frac{11\!\cdots\!11}{36\!\cdots\!00}a^{9}-\frac{32\!\cdots\!47}{73\!\cdots\!00}a^{8}+\frac{15\!\cdots\!69}{16\!\cdots\!00}a^{7}+\frac{54\!\cdots\!09}{36\!\cdots\!00}a^{6}-\frac{99\!\cdots\!31}{29\!\cdots\!00}a^{5}-\frac{20\!\cdots\!49}{48\!\cdots\!00}a^{4}-\frac{83\!\cdots\!03}{14\!\cdots\!00}a^{3}-\frac{14\!\cdots\!37}{61\!\cdots\!00}a^{2}-\frac{13\!\cdots\!01}{30\!\cdots\!00}a-\frac{59\!\cdots\!83}{18\!\cdots\!00}$, $\frac{11\!\cdots\!31}{41\!\cdots\!00}a^{31}-\frac{32\!\cdots\!87}{41\!\cdots\!00}a^{30}-\frac{25\!\cdots\!79}{57\!\cdots\!00}a^{29}+\frac{11\!\cdots\!69}{68\!\cdots\!00}a^{28}+\frac{81\!\cdots\!19}{20\!\cdots\!00}a^{27}-\frac{19\!\cdots\!83}{10\!\cdots\!00}a^{26}-\frac{87\!\cdots\!29}{41\!\cdots\!00}a^{25}+\frac{19\!\cdots\!57}{20\!\cdots\!00}a^{24}+\frac{84\!\cdots\!51}{41\!\cdots\!00}a^{23}-\frac{28\!\cdots\!81}{51\!\cdots\!00}a^{22}-\frac{26\!\cdots\!41}{17\!\cdots\!00}a^{21}+\frac{18\!\cdots\!77}{51\!\cdots\!00}a^{20}+\frac{95\!\cdots\!97}{20\!\cdots\!00}a^{19}-\frac{24\!\cdots\!99}{25\!\cdots\!00}a^{18}-\frac{44\!\cdots\!83}{45\!\cdots\!00}a^{17}-\frac{44\!\cdots\!63}{22\!\cdots\!00}a^{16}+\frac{50\!\cdots\!93}{91\!\cdots\!00}a^{15}-\frac{70\!\cdots\!83}{68\!\cdots\!00}a^{14}+\frac{11\!\cdots\!49}{51\!\cdots\!00}a^{13}-\frac{60\!\cdots\!19}{20\!\cdots\!00}a^{12}+\frac{33\!\cdots\!81}{13\!\cdots\!00}a^{11}-\frac{50\!\cdots\!91}{16\!\cdots\!24}a^{10}+\frac{65\!\cdots\!73}{17\!\cdots\!00}a^{9}-\frac{21\!\cdots\!89}{20\!\cdots\!00}a^{8}+\frac{87\!\cdots\!09}{16\!\cdots\!40}a^{7}-\frac{10\!\cdots\!49}{51\!\cdots\!00}a^{6}-\frac{24\!\cdots\!07}{41\!\cdots\!00}a^{5}+\frac{16\!\cdots\!11}{20\!\cdots\!00}a^{4}+\frac{89\!\cdots\!89}{41\!\cdots\!00}a^{3}+\frac{37\!\cdots\!23}{51\!\cdots\!00}a^{2}-\frac{37\!\cdots\!01}{86\!\cdots\!00}a+\frac{47\!\cdots\!49}{18\!\cdots\!00}$, $\frac{89\!\cdots\!57}{10\!\cdots\!80}a^{31}-\frac{26\!\cdots\!59}{19\!\cdots\!00}a^{30}-\frac{67\!\cdots\!69}{44\!\cdots\!00}a^{29}+\frac{33\!\cdots\!19}{99\!\cdots\!00}a^{28}+\frac{20\!\cdots\!29}{12\!\cdots\!25}a^{27}-\frac{16\!\cdots\!81}{44\!\cdots\!00}a^{26}-\frac{43\!\cdots\!03}{39\!\cdots\!00}a^{25}+\frac{24\!\cdots\!79}{16\!\cdots\!00}a^{24}+\frac{62\!\cdots\!41}{79\!\cdots\!00}a^{23}-\frac{13\!\cdots\!09}{22\!\cdots\!00}a^{22}-\frac{52\!\cdots\!79}{99\!\cdots\!00}a^{21}+\frac{45\!\cdots\!01}{11\!\cdots\!00}a^{20}+\frac{79\!\cdots\!33}{44\!\cdots\!00}a^{19}-\frac{17\!\cdots\!87}{39\!\cdots\!00}a^{18}-\frac{20\!\cdots\!99}{79\!\cdots\!00}a^{17}-\frac{22\!\cdots\!17}{49\!\cdots\!00}a^{16}+\frac{20\!\cdots\!81}{26\!\cdots\!00}a^{15}-\frac{16\!\cdots\!59}{79\!\cdots\!00}a^{14}+\frac{45\!\cdots\!93}{99\!\cdots\!00}a^{13}-\frac{16\!\cdots\!69}{66\!\cdots\!00}a^{12}+\frac{18\!\cdots\!83}{79\!\cdots\!00}a^{11}-\frac{13\!\cdots\!67}{33\!\cdots\!00}a^{10}+\frac{73\!\cdots\!47}{39\!\cdots\!00}a^{9}+\frac{19\!\cdots\!23}{99\!\cdots\!00}a^{8}+\frac{26\!\cdots\!67}{79\!\cdots\!00}a^{7}+\frac{35\!\cdots\!13}{99\!\cdots\!00}a^{6}-\frac{37\!\cdots\!09}{26\!\cdots\!00}a^{5}-\frac{10\!\cdots\!99}{19\!\cdots\!00}a^{4}-\frac{45\!\cdots\!23}{53\!\cdots\!00}a^{3}-\frac{50\!\cdots\!31}{11\!\cdots\!00}a^{2}-\frac{46\!\cdots\!69}{24\!\cdots\!50}a-\frac{26\!\cdots\!09}{35\!\cdots\!00}$, $\frac{30\!\cdots\!47}{13\!\cdots\!00}a^{31}-\frac{13\!\cdots\!09}{20\!\cdots\!00}a^{30}-\frac{56\!\cdots\!79}{17\!\cdots\!00}a^{29}+\frac{94\!\cdots\!59}{68\!\cdots\!00}a^{28}+\frac{55\!\cdots\!93}{20\!\cdots\!00}a^{27}-\frac{14\!\cdots\!33}{10\!\cdots\!00}a^{26}-\frac{26\!\cdots\!31}{20\!\cdots\!00}a^{25}+\frac{44\!\cdots\!73}{68\!\cdots\!00}a^{24}+\frac{58\!\cdots\!49}{41\!\cdots\!00}a^{23}-\frac{33\!\cdots\!77}{86\!\cdots\!00}a^{22}-\frac{66\!\cdots\!08}{64\!\cdots\!25}a^{21}+\frac{14\!\cdots\!27}{51\!\cdots\!00}a^{20}+\frac{46\!\cdots\!63}{20\!\cdots\!00}a^{19}-\frac{28\!\cdots\!19}{51\!\cdots\!00}a^{18}-\frac{64\!\cdots\!93}{16\!\cdots\!40}a^{17}-\frac{84\!\cdots\!01}{20\!\cdots\!00}a^{16}+\frac{16\!\cdots\!19}{41\!\cdots\!00}a^{15}-\frac{68\!\cdots\!17}{68\!\cdots\!00}a^{14}+\frac{11\!\cdots\!39}{51\!\cdots\!00}a^{13}-\frac{34\!\cdots\!11}{10\!\cdots\!00}a^{12}+\frac{17\!\cdots\!33}{41\!\cdots\!00}a^{11}-\frac{11\!\cdots\!53}{20\!\cdots\!00}a^{10}+\frac{45\!\cdots\!01}{64\!\cdots\!25}a^{9}-\frac{12\!\cdots\!99}{20\!\cdots\!00}a^{8}+\frac{41\!\cdots\!63}{82\!\cdots\!00}a^{7}-\frac{13\!\cdots\!51}{34\!\cdots\!00}a^{6}+\frac{24\!\cdots\!03}{41\!\cdots\!00}a^{5}-\frac{25\!\cdots\!99}{20\!\cdots\!00}a^{4}+\frac{52\!\cdots\!79}{41\!\cdots\!00}a^{3}+\frac{82\!\cdots\!63}{10\!\cdots\!00}a^{2}+\frac{27\!\cdots\!51}{51\!\cdots\!00}a-\frac{51\!\cdots\!01}{18\!\cdots\!00}$, $\frac{13\!\cdots\!59}{41\!\cdots\!00}a^{31}-\frac{53\!\cdots\!49}{20\!\cdots\!00}a^{30}-\frac{14\!\cdots\!91}{20\!\cdots\!00}a^{29}+\frac{21\!\cdots\!09}{22\!\cdots\!00}a^{28}+\frac{12\!\cdots\!39}{13\!\cdots\!00}a^{27}-\frac{61\!\cdots\!53}{51\!\cdots\!00}a^{26}-\frac{14\!\cdots\!43}{20\!\cdots\!00}a^{25}+\frac{11\!\cdots\!31}{20\!\cdots\!00}a^{24}+\frac{38\!\cdots\!19}{82\!\cdots\!00}a^{23}-\frac{20\!\cdots\!89}{17\!\cdots\!00}a^{22}-\frac{15\!\cdots\!29}{51\!\cdots\!00}a^{21}+\frac{76\!\cdots\!93}{17\!\cdots\!00}a^{20}+\frac{96\!\cdots\!07}{68\!\cdots\!00}a^{19}+\frac{62\!\cdots\!27}{51\!\cdots\!00}a^{18}-\frac{28\!\cdots\!87}{82\!\cdots\!00}a^{17}-\frac{51\!\cdots\!57}{20\!\cdots\!00}a^{16}+\frac{53\!\cdots\!41}{82\!\cdots\!00}a^{15}-\frac{90\!\cdots\!57}{41\!\cdots\!00}a^{14}+\frac{34\!\cdots\!87}{51\!\cdots\!00}a^{13}+\frac{47\!\cdots\!71}{34\!\cdots\!00}a^{12}-\frac{11\!\cdots\!57}{45\!\cdots\!00}a^{11}-\frac{43\!\cdots\!77}{20\!\cdots\!00}a^{10}+\frac{73\!\cdots\!57}{10\!\cdots\!00}a^{9}+\frac{97\!\cdots\!69}{20\!\cdots\!00}a^{8}+\frac{27\!\cdots\!99}{13\!\cdots\!00}a^{7}-\frac{29\!\cdots\!71}{10\!\cdots\!00}a^{6}-\frac{66\!\cdots\!73}{26\!\cdots\!00}a^{5}-\frac{19\!\cdots\!97}{68\!\cdots\!00}a^{4}+\frac{96\!\cdots\!47}{27\!\cdots\!00}a^{3}-\frac{11\!\cdots\!53}{51\!\cdots\!00}a^{2}+\frac{28\!\cdots\!63}{25\!\cdots\!00}a+\frac{13\!\cdots\!33}{18\!\cdots\!00}$, $\frac{20\!\cdots\!83}{20\!\cdots\!00}a^{31}+\frac{44\!\cdots\!41}{10\!\cdots\!00}a^{30}-\frac{11\!\cdots\!83}{51\!\cdots\!00}a^{29}+\frac{14\!\cdots\!13}{10\!\cdots\!00}a^{28}+\frac{34\!\cdots\!27}{11\!\cdots\!00}a^{27}-\frac{18\!\cdots\!99}{86\!\cdots\!00}a^{26}-\frac{28\!\cdots\!23}{11\!\cdots\!00}a^{25}+\frac{80\!\cdots\!57}{10\!\cdots\!00}a^{24}+\frac{33\!\cdots\!79}{20\!\cdots\!00}a^{23}+\frac{14\!\cdots\!49}{51\!\cdots\!00}a^{22}-\frac{17\!\cdots\!61}{17\!\cdots\!00}a^{21}-\frac{81\!\cdots\!51}{25\!\cdots\!00}a^{20}+\frac{49\!\cdots\!31}{10\!\cdots\!00}a^{19}+\frac{87\!\cdots\!17}{51\!\cdots\!00}a^{18}-\frac{23\!\cdots\!51}{20\!\cdots\!00}a^{17}-\frac{29\!\cdots\!27}{34\!\cdots\!00}a^{16}+\frac{33\!\cdots\!09}{20\!\cdots\!00}a^{15}+\frac{19\!\cdots\!79}{34\!\cdots\!00}a^{14}-\frac{27\!\cdots\!27}{12\!\cdots\!50}a^{13}+\frac{12\!\cdots\!19}{12\!\cdots\!50}a^{12}-\frac{25\!\cdots\!33}{20\!\cdots\!00}a^{11}+\frac{16\!\cdots\!53}{10\!\cdots\!00}a^{10}+\frac{27\!\cdots\!44}{64\!\cdots\!25}a^{9}+\frac{12\!\cdots\!11}{10\!\cdots\!00}a^{8}+\frac{61\!\cdots\!77}{20\!\cdots\!00}a^{7}-\frac{19\!\cdots\!49}{51\!\cdots\!00}a^{6}-\frac{10\!\cdots\!87}{20\!\cdots\!00}a^{5}-\frac{14\!\cdots\!33}{34\!\cdots\!00}a^{4}+\frac{10\!\cdots\!17}{20\!\cdots\!00}a^{3}-\frac{10\!\cdots\!03}{28\!\cdots\!00}a^{2}-\frac{16\!\cdots\!78}{21\!\cdots\!75}a+\frac{63\!\cdots\!79}{61\!\cdots\!00}$, $\frac{58\!\cdots\!89}{41\!\cdots\!00}a^{31}-\frac{67\!\cdots\!99}{20\!\cdots\!00}a^{30}-\frac{25\!\cdots\!47}{10\!\cdots\!00}a^{29}+\frac{52\!\cdots\!01}{68\!\cdots\!00}a^{28}+\frac{56\!\cdots\!31}{22\!\cdots\!00}a^{27}-\frac{21\!\cdots\!47}{25\!\cdots\!00}a^{26}-\frac{32\!\cdots\!29}{20\!\cdots\!00}a^{25}+\frac{85\!\cdots\!53}{20\!\cdots\!00}a^{24}+\frac{53\!\cdots\!01}{41\!\cdots\!00}a^{23}-\frac{92\!\cdots\!23}{43\!\cdots\!75}a^{22}-\frac{47\!\cdots\!49}{51\!\cdots\!00}a^{21}+\frac{24\!\cdots\!19}{17\!\cdots\!00}a^{20}+\frac{17\!\cdots\!29}{55\!\cdots\!08}a^{19}-\frac{17\!\cdots\!49}{51\!\cdots\!00}a^{18}-\frac{54\!\cdots\!89}{82\!\cdots\!00}a^{17}-\frac{72\!\cdots\!83}{20\!\cdots\!00}a^{16}+\frac{21\!\cdots\!67}{82\!\cdots\!00}a^{15}-\frac{84\!\cdots\!91}{20\!\cdots\!00}a^{14}+\frac{11\!\cdots\!11}{12\!\cdots\!50}a^{13}-\frac{31\!\cdots\!41}{34\!\cdots\!00}a^{12}+\frac{15\!\cdots\!59}{27\!\cdots\!00}a^{11}-\frac{20\!\cdots\!83}{20\!\cdots\!00}a^{10}+\frac{12\!\cdots\!79}{10\!\cdots\!00}a^{9}+\frac{45\!\cdots\!43}{20\!\cdots\!00}a^{8}+\frac{17\!\cdots\!27}{18\!\cdots\!60}a^{7}-\frac{13\!\cdots\!17}{25\!\cdots\!00}a^{6}-\frac{28\!\cdots\!37}{41\!\cdots\!00}a^{5}+\frac{15\!\cdots\!53}{68\!\cdots\!00}a^{4}-\frac{28\!\cdots\!39}{13\!\cdots\!00}a^{3}+\frac{15\!\cdots\!63}{51\!\cdots\!00}a^{2}-\frac{41\!\cdots\!81}{25\!\cdots\!00}a+\frac{66\!\cdots\!51}{18\!\cdots\!00}$, $\frac{13\!\cdots\!21}{41\!\cdots\!00}a^{31}-\frac{53\!\cdots\!51}{51\!\cdots\!00}a^{30}-\frac{19\!\cdots\!43}{41\!\cdots\!00}a^{29}+\frac{18\!\cdots\!03}{86\!\cdots\!00}a^{28}+\frac{19\!\cdots\!73}{51\!\cdots\!00}a^{27}-\frac{46\!\cdots\!27}{20\!\cdots\!00}a^{26}-\frac{17\!\cdots\!47}{10\!\cdots\!00}a^{25}+\frac{71\!\cdots\!49}{64\!\cdots\!25}a^{24}+\frac{83\!\cdots\!51}{41\!\cdots\!00}a^{23}-\frac{14\!\cdots\!44}{21\!\cdots\!75}a^{22}-\frac{13\!\cdots\!21}{86\!\cdots\!00}a^{21}+\frac{23\!\cdots\!49}{51\!\cdots\!00}a^{20}+\frac{73\!\cdots\!43}{20\!\cdots\!00}a^{19}-\frac{44\!\cdots\!63}{41\!\cdots\!60}a^{18}-\frac{28\!\cdots\!77}{41\!\cdots\!00}a^{17}-\frac{52\!\cdots\!33}{34\!\cdots\!00}a^{16}+\frac{17\!\cdots\!31}{27\!\cdots\!00}a^{15}-\frac{30\!\cdots\!09}{20\!\cdots\!00}a^{14}+\frac{18\!\cdots\!69}{57\!\cdots\!00}a^{13}-\frac{49\!\cdots\!03}{10\!\cdots\!00}a^{12}+\frac{22\!\cdots\!93}{41\!\cdots\!00}a^{11}-\frac{36\!\cdots\!43}{51\!\cdots\!00}a^{10}+\frac{18\!\cdots\!37}{20\!\cdots\!00}a^{9}-\frac{38\!\cdots\!67}{51\!\cdots\!00}a^{8}+\frac{25\!\cdots\!77}{41\!\cdots\!00}a^{7}-\frac{33\!\cdots\!63}{51\!\cdots\!00}a^{6}+\frac{31\!\cdots\!27}{82\!\cdots\!00}a^{5}-\frac{67\!\cdots\!49}{25\!\cdots\!50}a^{4}+\frac{73\!\cdots\!81}{41\!\cdots\!00}a^{3}-\frac{16\!\cdots\!43}{17\!\cdots\!00}a^{2}+\frac{39\!\cdots\!72}{64\!\cdots\!25}a+\frac{32\!\cdots\!17}{36\!\cdots\!00}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 51309842707789.04 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 51309842707789.04 \cdot 1350}{6\cdot\sqrt{922280736601273559510361401082691485048147448883056640625}}\cr\approx \mathstrut & 2.24300130508051 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{4}{,}\,{\href{/padicField/2.2.0.1}{2} }^{8}$ | R | R | R | ${\href{/padicField/11.4.0.1}{4} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{8}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(5\) | 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(7\) | 7.16.8.1 | $x^{16} + 56 x^{14} + 1372 x^{12} + 8 x^{11} + 19220 x^{10} - 388 x^{9} + 166984 x^{8} - 9184 x^{7} + 931800 x^{6} - 35624 x^{5} + 3372764 x^{4} + 135176 x^{3} + 6908172 x^{2} + 607080 x + 5583776$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
7.16.8.1 | $x^{16} + 56 x^{14} + 1372 x^{12} + 8 x^{11} + 19220 x^{10} - 388 x^{9} + 166984 x^{8} - 9184 x^{7} + 931800 x^{6} - 35624 x^{5} + 3372764 x^{4} + 135176 x^{3} + 6908172 x^{2} + 607080 x + 5583776$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ | |
\(89\) | 89.4.0.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
89.4.0.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
89.4.0.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
89.4.0.1 | $x^{4} + 4 x^{2} + 72 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(181\) | 181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.4.2.1 | $x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
181.4.2.1 | $x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |