Normalized defining polynomial
\( x^{32} + 608 x^{30} + 167504 x^{28} + 27655488 x^{26} + 3049511400 x^{24} + 236913152320 x^{22} + 13330920840160 x^{20} + 549995705519744 x^{18} + 16654557457769748 x^{16} + 366883004866811840 x^{14} + 5766733776497433376 x^{12} + 62610252430543562368 x^{10} + 446098048567622881872 x^{8} + 1921653132291298568064 x^{6} + 4346596370658889618240 x^{4} + 3886368519647948364544 x^{2} + 576882827135242335362 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{19} a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{361} a^{4}$, $\frac{1}{361} a^{5}$, $\frac{1}{6859} a^{6}$, $\frac{1}{6859} a^{7}$, $\frac{1}{130321} a^{8}$, $\frac{1}{130321} a^{9}$, $\frac{1}{2476099} a^{10}$, $\frac{1}{2476099} a^{11}$, $\frac{1}{47045881} a^{12}$, $\frac{1}{47045881} a^{13}$, $\frac{1}{893871739} a^{14}$, $\frac{1}{893871739} a^{15}$, $\frac{1}{16983563041} a^{16}$, $\frac{1}{16983563041} a^{17}$, $\frac{1}{322687697779} a^{18}$, $\frac{1}{322687697779} a^{19}$, $\frac{1}{6131066257801} a^{20}$, $\frac{1}{6131066257801} a^{21}$, $\frac{1}{116490258898219} a^{22}$, $\frac{1}{116490258898219} a^{23}$, $\frac{1}{2213314919066161} a^{24}$, $\frac{1}{2213314919066161} a^{25}$, $\frac{1}{42052983462257059} a^{26}$, $\frac{1}{42052983462257059} a^{27}$, $\frac{1}{799006685782884121} a^{28}$, $\frac{1}{799006685782884121} a^{29}$, $\frac{1}{15181127029874798299} a^{30}$, $\frac{1}{15181127029874798299} a^{31}$
Class group and class number
Not computed
Unit group
Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
A cyclic group of order 32 |
The 32 conjugacy class representatives for $C_{32}$ |
Character table for $C_{32}$ is not computed |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | R | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
19 | Data not computed |