\\ Pari/GP code for working with number field 32.0.87993561227221187133696000000000000000000000000.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^32 - 5*y^30 + 19*y^28 - 70*y^26 + 215*y^24 - 590*y^22 + 1466*y^20 - 3340*y^18 + 7009*y^16 - 13360*y^14 + 23456*y^12 - 37760*y^10 + 55040*y^8 - 71680*y^6 + 77824*y^4 - 81920*y^2 + 65536, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^32 - 5*x^30 + 19*x^28 - 70*x^26 + 215*x^24 - 590*x^22 + 1466*x^20 - 3340*x^18 + 7009*x^16 - 13360*x^14 + 23456*x^12 - 37760*x^10 + 55040*x^8 - 71680*x^6 + 77824*x^4 - 81920*x^2 + 65536, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])