Normalized defining polynomial
\(x^{32} - 5 x^{30} + 19 x^{28} - 70 x^{26} + 215 x^{24} - 590 x^{22} + 1466 x^{20} - 3340 x^{18} + 7009 x^{16} - 13360 x^{14} + 23456 x^{12} - 37760 x^{10} + 55040 x^{8} - 71680 x^{6} + 77824 x^{4} - 81920 x^{2} + 65536\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(87993561227221187133696000000000000000000000000\)\(\medspace = 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 41^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $29.31$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 41$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{15} - \frac{1}{2} a^{13} - \frac{1}{3} a^{11} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{16} + \frac{1}{4} a^{14} - \frac{1}{6} a^{12} - \frac{1}{12} a^{10} - \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} + \frac{1}{12} a^{2}$, $\frac{1}{24} a^{19} - \frac{1}{24} a^{17} - \frac{3}{8} a^{15} - \frac{1}{12} a^{13} - \frac{1}{24} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{6} a^{5} + \frac{1}{24} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{20} - \frac{1}{48} a^{18} - \frac{1}{48} a^{16} - \frac{5}{24} a^{14} - \frac{1}{48} a^{12} - \frac{3}{8} a^{10} - \frac{7}{24} a^{8} - \frac{5}{12} a^{6} + \frac{1}{48} a^{4} + \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{96} a^{21} - \frac{1}{96} a^{19} - \frac{1}{96} a^{17} + \frac{19}{48} a^{15} - \frac{1}{96} a^{13} - \frac{3}{16} a^{11} + \frac{17}{48} a^{9} + \frac{7}{24} a^{7} - \frac{47}{96} a^{5} - \frac{11}{24} a^{3} + \frac{1}{3} a$, $\frac{1}{192} a^{22} - \frac{1}{192} a^{20} - \frac{1}{192} a^{18} + \frac{1}{32} a^{16} - \frac{65}{192} a^{14} + \frac{13}{32} a^{12} + \frac{1}{96} a^{10} - \frac{3}{16} a^{8} - \frac{79}{192} a^{6} - \frac{11}{48} a^{4} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{384} a^{23} - \frac{1}{384} a^{21} - \frac{1}{384} a^{19} + \frac{1}{64} a^{17} - \frac{65}{384} a^{15} - \frac{19}{64} a^{13} + \frac{1}{192} a^{11} - \frac{3}{32} a^{9} - \frac{79}{384} a^{7} - \frac{11}{96} a^{5} - \frac{1}{12} a^{3} - \frac{1}{3} a$, $\frac{1}{2304} a^{24} + \frac{1}{768} a^{22} - \frac{7}{768} a^{20} + \frac{41}{1152} a^{18} - \frac{115}{768} a^{16} - \frac{25}{384} a^{14} - \frac{475}{1152} a^{12} - \frac{5}{192} a^{10} - \frac{341}{768} a^{8} - \frac{133}{288} a^{6} + \frac{1}{8} a^{4} + \frac{1}{6} a^{2} + \frac{1}{9}$, $\frac{1}{4608} a^{25} + \frac{1}{1536} a^{23} - \frac{7}{1536} a^{21} + \frac{41}{2304} a^{19} - \frac{115}{1536} a^{17} + \frac{359}{768} a^{15} + \frac{677}{2304} a^{13} + \frac{187}{384} a^{11} + \frac{427}{1536} a^{9} + \frac{155}{576} a^{7} - \frac{7}{16} a^{5} + \frac{1}{12} a^{3} + \frac{1}{18} a$, $\frac{1}{9216} a^{26} - \frac{1}{9216} a^{24} + \frac{5}{3072} a^{22} - \frac{37}{4608} a^{20} + \frac{239}{9216} a^{18} + \frac{29}{1536} a^{16} + \frac{761}{4608} a^{14} - \frac{193}{2304} a^{12} - \frac{375}{1024} a^{10} + \frac{805}{2304} a^{8} - \frac{49}{576} a^{6} + \frac{1}{3} a^{4} - \frac{17}{36} a^{2} + \frac{2}{9}$, $\frac{1}{18432} a^{27} - \frac{1}{18432} a^{25} + \frac{5}{6144} a^{23} - \frac{37}{9216} a^{21} + \frac{239}{18432} a^{19} + \frac{29}{3072} a^{17} + \frac{761}{9216} a^{15} + \frac{2111}{4608} a^{13} - \frac{375}{2048} a^{11} + \frac{805}{4608} a^{9} + \frac{527}{1152} a^{7} - \frac{1}{3} a^{5} + \frac{19}{72} a^{3} + \frac{1}{9} a$, $\frac{1}{700416} a^{28} + \frac{1}{233472} a^{26} - \frac{37}{700416} a^{24} + \frac{305}{350208} a^{22} - \frac{321}{77824} a^{20} - \frac{12539}{350208} a^{18} + \frac{43949}{350208} a^{16} + \frac{3283}{58368} a^{14} + \frac{243425}{700416} a^{12} + \frac{20771}{87552} a^{10} + \frac{2345}{4864} a^{8} + \frac{3257}{10944} a^{6} + \frac{973}{2736} a^{4} + \frac{23}{228} a^{2} + \frac{23}{171}$, $\frac{1}{1400832} a^{29} + \frac{1}{466944} a^{27} - \frac{37}{1400832} a^{25} + \frac{305}{700416} a^{23} - \frac{321}{155648} a^{21} - \frac{12539}{700416} a^{19} + \frac{43949}{700416} a^{17} - \frac{55085}{116736} a^{15} - \frac{456991}{1400832} a^{13} + \frac{20771}{175104} a^{11} + \frac{2345}{9728} a^{9} - \frac{7687}{21888} a^{7} - \frac{1763}{5472} a^{5} - \frac{205}{456} a^{3} + \frac{23}{342} a$, $\frac{1}{669597696} a^{30} + \frac{157}{223199232} a^{28} - \frac{20521}{669597696} a^{26} - \frac{6635}{111599616} a^{24} + \frac{576949}{223199232} a^{22} + \frac{2497963}{334798848} a^{20} + \frac{942107}{111599616} a^{18} + \frac{117923}{2936832} a^{16} + \frac{50206769}{669597696} a^{14} - \frac{2330135}{55799808} a^{12} - \frac{2291539}{13949952} a^{10} - \frac{1458121}{10462464} a^{8} + \frac{268625}{871872} a^{6} - \frac{46105}{217968} a^{4} + \frac{58541}{163476} a^{2} - \frac{1432}{40869}$, $\frac{1}{1339195392} a^{31} + \frac{157}{446398464} a^{29} - \frac{20521}{1339195392} a^{27} - \frac{6635}{223199232} a^{25} + \frac{576949}{446398464} a^{23} + \frac{2497963}{669597696} a^{21} + \frac{942107}{223199232} a^{19} + \frac{117923}{5873664} a^{17} + \frac{50206769}{1339195392} a^{15} - \frac{2330135}{111599616} a^{13} - \frac{2291539}{27899904} a^{11} + \frac{9004343}{20924928} a^{9} - \frac{603247}{1743744} a^{7} + \frac{171863}{435936} a^{5} + \frac{58541}{326952} a^{3} - \frac{716}{40869} a$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{113743}{669597696} a^{31} + \frac{930041}{669597696} a^{29} - \frac{374675}{74399744} a^{27} + \frac{142897}{8810496} a^{25} - \frac{30438373}{669597696} a^{23} + \frac{6160595}{55799808} a^{21} - \frac{4125595}{17620992} a^{19} + \frac{18279485}{41849856} a^{17} - \frac{160684685}{223199232} a^{15} + \frac{17595125}{17620992} a^{13} - \frac{89290565}{83699712} a^{11} + \frac{2441033}{3487488} a^{9} + \frac{86357}{275328} a^{7} - \frac{2488325}{1307808} a^{5} + \frac{506723}{108984} a^{3} - \frac{575189}{81738} a \) (order $60$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 43671525522.024 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_2^2:C_4$ (as 32T262):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^2\times C_2^2:C_4$ |
Character table for $C_2^2\times C_2^2:C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
$41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |