Normalized defining polynomial
\( x^{32} + 16 x^{30} + 56 x^{28} - 256 x^{26} - 1460 x^{24} + 1760 x^{22} + 12800 x^{20} - 10048 x^{18} + 12827 x^{16} - 536128 x^{14} + 2598488 x^{12} - 4206560 x^{10} + 8338152 x^{8} + 605472 x^{6} + 4540976 x^{4} + 921344 x^{2} + 34093921 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(873091227416114037923609044826021953536000000000000000000000000=2^{128}\cdot 3^{16}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(43,·)$, $\chi_{480}(389,·)$, $\chi_{480}(263,·)$, $\chi_{480}(407,·)$, $\chi_{480}(269,·)$, $\chi_{480}(143,·)$, $\chi_{480}(403,·)$, $\chi_{480}(149,·)$, $\chi_{480}(23,·)$, $\chi_{480}(409,·)$, $\chi_{480}(283,·)$, $\chi_{480}(29,·)$, $\chi_{480}(287,·)$, $\chi_{480}(289,·)$, $\chi_{480}(163,·)$, $\chi_{480}(167,·)$, $\chi_{480}(169,·)$, $\chi_{480}(427,·)$, $\chi_{480}(47,·)$, $\chi_{480}(49,·)$, $\chi_{480}(307,·)$, $\chi_{480}(187,·)$, $\chi_{480}(67,·)$, $\chi_{480}(461,·)$, $\chi_{480}(341,·)$, $\chi_{480}(221,·)$, $\chi_{480}(101,·)$, $\chi_{480}(361,·)$, $\chi_{480}(241,·)$, $\chi_{480}(121,·)$, $\chi_{480}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{5839} a^{23} + \frac{13}{5839} a^{21} - \frac{2500}{5839} a^{19} + \frac{2494}{5839} a^{17} - \frac{1145}{5839} a^{15} - \frac{113}{5839} a^{13} + \frac{2338}{5839} a^{11} + \frac{395}{5839} a^{9} - \frac{1119}{5839} a^{7} - \frac{189}{5839} a^{5} - \frac{2188}{5839} a^{3} - \frac{30}{5839} a$, $\frac{1}{5074091} a^{24} - \frac{1845111}{5074091} a^{22} - \frac{144079}{461281} a^{20} + \frac{878344}{5074091} a^{18} + \frac{2328616}{5074091} a^{16} + \frac{1249433}{5074091} a^{14} - \frac{1848625}{5074091} a^{12} - \frac{1354253}{5074091} a^{10} - \frac{2050608}{5074091} a^{8} - \frac{1640948}{5074091} a^{6} + \frac{307279}{5074091} a^{4} + \frac{834947}{5074091} a^{2} - \frac{58}{869}$, $\frac{1}{5074091} a^{25} - \frac{224}{5074091} a^{23} + \frac{191118}{461281} a^{21} + \frac{1009563}{5074091} a^{19} + \frac{1276257}{5074091} a^{17} - \frac{324326}{5074091} a^{15} - \frac{2283125}{5074091} a^{13} - \frac{985797}{5074091} a^{11} + \frac{1084744}{5074091} a^{9} - \frac{914464}{5074091} a^{7} + \frac{1735915}{5074091} a^{5} - \frac{1875464}{5074091} a^{3} + \frac{129729}{5074091} a$, $\frac{1}{5074091} a^{26} - \frac{201195}{5074091} a^{22} + \frac{1185277}{5074091} a^{20} + \frac{135764}{5074091} a^{18} - \frac{1345715}{5074091} a^{16} - \frac{1485138}{5074091} a^{14} + \frac{997665}{5074091} a^{12} + \frac{2177532}{5074091} a^{10} + \frac{1491625}{5074091} a^{8} - \frac{501885}{5074091} a^{6} + \frac{991849}{5074091} a^{4} - \frac{583510}{5074091} a^{2} + \frac{43}{869}$, $\frac{1}{5074091} a^{27} + \frac{413}{5074091} a^{23} - \frac{1267910}{5074091} a^{21} - \frac{1549227}{5074091} a^{19} - \frac{870372}{5074091} a^{17} + \frac{1081888}{5074091} a^{15} - \frac{1487675}{5074091} a^{13} + \frac{1646573}{5074091} a^{11} - \frac{58671}{5074091} a^{9} + \frac{2232858}{5074091} a^{7} - \frac{1593426}{5074091} a^{5} - \frac{255897}{5074091} a^{3} - \frac{723072}{5074091} a$, $\frac{1}{5074091} a^{28} - \frac{350717}{5074091} a^{22} - \frac{1556069}{5074091} a^{20} + \frac{1708108}{5074091} a^{18} - \frac{1633321}{5074091} a^{16} + \frac{53778}{5074091} a^{14} - \frac{1059043}{5074091} a^{12} + \frac{1097808}{5074091} a^{10} + \frac{1760765}{5074091} a^{8} + \frac{1263995}{5074091} a^{6} - \frac{309849}{5074091} a^{4} - \frac{517995}{5074091} a^{2} - \frac{378}{869}$, $\frac{1}{5074091} a^{29} + \frac{359}{5074091} a^{23} - \frac{2066172}{5074091} a^{21} + \frac{1835851}{5074091} a^{19} + \frac{1206571}{5074091} a^{17} - \frac{1075053}{5074091} a^{15} - \frac{137903}{5074091} a^{13} - \frac{89246}{5074091} a^{11} - \frac{1638763}{5074091} a^{9} - \frac{885042}{5074091} a^{7} - \frac{700030}{5074091} a^{5} - \frac{2484542}{5074091} a^{3} + \frac{2482851}{5074091} a$, $\frac{1}{98820431776769202594936970481653826703081509} a^{30} + \frac{8547186992829204746492630370049542845}{98820431776769202594936970481653826703081509} a^{28} - \frac{6064884370041987805941922285825495643}{98820431776769202594936970481653826703081509} a^{26} - \frac{3990832091229929646211043011467404898}{98820431776769202594936970481653826703081509} a^{24} + \frac{44505742807031099993322519711226879045544147}{98820431776769202594936970481653826703081509} a^{22} + \frac{18351494195360900864786766727447542415509996}{98820431776769202594936970481653826703081509} a^{20} - \frac{32255546484636259927915424002063441993579219}{98820431776769202594936970481653826703081509} a^{18} - \frac{36259157870759714436610603541421877096522394}{98820431776769202594936970481653826703081509} a^{16} - \frac{31987050077359177905283450736498183067817980}{98820431776769202594936970481653826703081509} a^{14} - \frac{14164749434341713849865317082645499428479962}{98820431776769202594936970481653826703081509} a^{12} - \frac{1512434770099872916998141477668608309524608}{8983675616069927508630633680150347882098319} a^{10} + \frac{4085276404776425843628815309815498322901108}{98820431776769202594936970481653826703081509} a^{8} + \frac{17879379883348722657725772654733163648908333}{98820431776769202594936970481653826703081509} a^{6} + \frac{13816178718835191644037266393540620815596328}{98820431776769202594936970481653826703081509} a^{4} - \frac{40117997260163266267990148239512616655050968}{98820431776769202594936970481653826703081509} a^{2} + \frac{232480135186105756443113278392785762}{2898476586977754849462371033289301829}$, $\frac{1}{98820431776769202594936970481653826703081509} a^{31} + \frac{8547186992829204746492630370049542845}{98820431776769202594936970481653826703081509} a^{29} - \frac{6064884370041987805941922285825495643}{98820431776769202594936970481653826703081509} a^{27} - \frac{3990832091229929646211043011467404898}{98820431776769202594936970481653826703081509} a^{25} - \frac{4915794253880795285843427452614742622383}{98820431776769202594936970481653826703081509} a^{23} + \frac{32635523039271366182499868814537083387834160}{98820431776769202594936970481653826703081509} a^{21} - \frac{27415223914306410306036339645537839247033353}{98820431776769202594936970481653826703081509} a^{19} + \frac{28323607613081915483286549970821829479767902}{98820431776769202594936970481653826703081509} a^{17} + \frac{40194683357804488658752544999801452295881735}{98820431776769202594936970481653826703081509} a^{15} - \frac{24302348104368217078905776976207863222819031}{98820431776769202594936970481653826703081509} a^{13} - \frac{2240175576128486671336605209593786344844441}{8983675616069927508630633680150347882098319} a^{11} + \frac{12411985162127076242106121265796605145630360}{98820431776769202594936970481653826703081509} a^{9} + \frac{19808739229564117262251002083558054254174867}{98820431776769202594936970481653826703081509} a^{7} + \frac{26593953336314340121375408663389677017142233}{98820431776769202594936970481653826703081509} a^{5} + \frac{11077722233710143194192474762200489318030307}{98820431776769202594936970481653826703081509} a^{3} - \frac{6891612857187018789698569528205876941016}{16924204791363110566010784463376233379531} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||