Normalized defining polynomial
\( x^{32} - x^{31} - 6 x^{30} + 17 x^{29} - 15 x^{28} + 75 x^{27} + 311 x^{26} - 1476 x^{25} + 111 x^{24} + 8701 x^{23} + 9977 x^{22} - 19105 x^{21} - 16109 x^{20} - 113360 x^{19} - 246837 x^{18} + 284709 x^{17} + 1584805 x^{16} - 284709 x^{15} - 246837 x^{14} + 113360 x^{13} - 16109 x^{12} + 19105 x^{11} + 9977 x^{10} - 8701 x^{9} + 111 x^{8} + 1476 x^{7} + 311 x^{6} - 75 x^{5} - 15 x^{4} - 17 x^{3} - 6 x^{2} + x + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(870952144140052907613964449886024608671665191650390625=3^{16}\cdot 5^{24}\cdot 17^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(4,·)$, $\chi_{255}(137,·)$, $\chi_{255}(13,·)$, $\chi_{255}(16,·)$, $\chi_{255}(149,·)$, $\chi_{255}(217,·)$, $\chi_{255}(152,·)$, $\chi_{255}(154,·)$, $\chi_{255}(157,·)$, $\chi_{255}(38,·)$, $\chi_{255}(169,·)$, $\chi_{255}(47,·)$, $\chi_{255}(52,·)$, $\chi_{255}(188,·)$, $\chi_{255}(191,·)$, $\chi_{255}(64,·)$, $\chi_{255}(67,·)$, $\chi_{255}(203,·)$, $\chi_{255}(208,·)$, $\chi_{255}(86,·)$, $\chi_{255}(89,·)$, $\chi_{255}(98,·)$, $\chi_{255}(101,·)$, $\chi_{255}(103,·)$, $\chi_{255}(106,·)$, $\chi_{255}(239,·)$, $\chi_{255}(242,·)$, $\chi_{255}(118,·)$, $\chi_{255}(251,·)$, $\chi_{255}(254,·)$, $\chi_{255}(166,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{4}$, $\frac{1}{354} a^{20} - \frac{1}{118} a^{15} + \frac{64}{177} a^{10} + \frac{1}{118} a^{5} + \frac{1}{354}$, $\frac{1}{354} a^{21} - \frac{1}{118} a^{16} + \frac{64}{177} a^{11} + \frac{1}{118} a^{6} + \frac{1}{354} a$, $\frac{1}{354} a^{22} - \frac{1}{118} a^{17} - \frac{49}{354} a^{12} - \frac{1}{2} a^{9} + \frac{1}{118} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{354} a^{2} - \frac{1}{2}$, $\frac{1}{354} a^{23} - \frac{1}{118} a^{18} - \frac{49}{354} a^{13} - \frac{1}{2} a^{10} + \frac{1}{118} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} + \frac{1}{354} a^{3} - \frac{1}{2} a$, $\frac{1}{1416} a^{24} - \frac{15}{118} a^{19} + \frac{1}{8} a^{18} + \frac{16}{177} a^{14} + \frac{1}{8} a^{12} - \frac{22}{59} a^{9} - \frac{3}{8} a^{6} + \frac{133}{354} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8}$, $\frac{1}{1416} a^{25} + \frac{1}{8} a^{19} + \frac{37}{177} a^{15} + \frac{1}{8} a^{13} - \frac{6}{59} a^{10} - \frac{3}{8} a^{7} - \frac{43}{177} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a - \frac{22}{59}$, $\frac{1}{1969759368} a^{26} + \frac{134503}{1969759368} a^{25} - \frac{205081}{984879684} a^{24} - \frac{57137}{54715538} a^{23} + \frac{161603}{246219921} a^{22} - \frac{184448}{246219921} a^{21} + \frac{2612893}{1969759368} a^{20} - \frac{120142355}{656586456} a^{19} + \frac{50383913}{328293228} a^{18} - \frac{11765725}{164146614} a^{17} - \frac{25435175}{246219921} a^{16} + \frac{117696515}{492439842} a^{15} - \frac{216416011}{1969759368} a^{14} - \frac{133462003}{656586456} a^{13} + \frac{181703029}{984879684} a^{12} - \frac{80763233}{492439842} a^{11} - \frac{54783368}{246219921} a^{10} - \frac{23821691}{164146614} a^{9} - \frac{292272209}{656586456} a^{8} - \frac{277797295}{656586456} a^{7} - \frac{359971435}{984879684} a^{6} - \frac{69458855}{492439842} a^{5} - \frac{94452479}{492439842} a^{4} + \frac{54544127}{164146614} a^{3} + \frac{362552833}{1969759368} a^{2} - \frac{474685081}{1969759368} a + \frac{353564387}{984879684}$, $\frac{1}{1969759368} a^{27} - \frac{31267}{109431076} a^{25} + \frac{180593}{1969759368} a^{24} + \frac{3286}{2437821} a^{23} - \frac{123191}{492439842} a^{22} + \frac{356297}{1969759368} a^{21} - \frac{1568}{246219921} a^{20} - \frac{20207735}{109431076} a^{19} + \frac{121145851}{656586456} a^{18} - \frac{4083443}{246219921} a^{17} + \frac{3082367}{82073307} a^{16} + \frac{149465}{218862152} a^{15} + \frac{56315522}{246219921} a^{14} + \frac{42493597}{984879684} a^{13} + \frac{388675553}{1969759368} a^{12} + \frac{86272922}{246219921} a^{11} + \frac{107997893}{246219921} a^{10} + \frac{19239485}{218862152} a^{9} + \frac{19483109}{82073307} a^{8} + \frac{403172735}{984879684} a^{7} + \frac{10130827}{656586456} a^{6} + \frac{11311132}{27357769} a^{5} - \frac{45821687}{246219921} a^{4} + \frac{692208325}{1969759368} a^{3} - \frac{24410}{2437821} a^{2} + \frac{106804453}{984879684} a - \frac{805760455}{1969759368}$, $\frac{1}{25606871784} a^{28} - \frac{1}{4267811964} a^{27} - \frac{1}{25606871784} a^{26} + \frac{81421}{6401717946} a^{25} - \frac{1296901}{4267811964} a^{24} + \frac{646277}{3200858973} a^{23} + \frac{18737989}{25606871784} a^{22} - \frac{4240651}{4267811964} a^{21} + \frac{16170119}{25606871784} a^{20} + \frac{62330467}{355650997} a^{19} - \frac{70713191}{12803435892} a^{18} + \frac{37921748}{1066952991} a^{17} - \frac{1519504295}{25606871784} a^{16} + \frac{1649816989}{12803435892} a^{15} - \frac{274631085}{2845207976} a^{14} + \frac{30719422}{3200858973} a^{13} + \frac{2924553211}{12803435892} a^{12} - \frac{5500903}{12055966} a^{11} - \frac{5901659471}{25606871784} a^{10} + \frac{628568691}{1422603988} a^{9} + \frac{3397582231}{25606871784} a^{8} + \frac{148301765}{355650997} a^{7} + \frac{5245023061}{12803435892} a^{6} + \frac{741044153}{3200858973} a^{5} - \frac{2278440037}{8535623928} a^{4} + \frac{1535535647}{12803435892} a^{3} + \frac{2694533347}{25606871784} a^{2} - \frac{432946439}{1066952991} a - \frac{696453257}{12803435892}$, $\frac{1}{6134100528985416} a^{29} - \frac{1907}{511175044082118} a^{28} - \frac{5849}{78642314474172} a^{27} + \frac{308207}{3067050264492708} a^{26} - \frac{163062511435}{681566725442824} a^{25} + \frac{349409562487}{2044700176328472} a^{24} + \frac{756083168693}{6134100528985416} a^{23} + \frac{46110199958}{58981735855629} a^{22} - \frac{2523388302349}{3067050264492708} a^{21} - \frac{4319458631795}{3067050264492708} a^{20} - \frac{624175389815395}{6134100528985416} a^{19} + \frac{32000591769395}{157284628948344} a^{18} - \frac{52289714689}{2044700176328472} a^{17} + \frac{21302226179009}{1533525132246354} a^{16} - \frac{9050114788609}{1022350088164236} a^{15} + \frac{197143145890501}{1022350088164236} a^{14} - \frac{1024998188490983}{6134100528985416} a^{13} - \frac{643679194760335}{6134100528985416} a^{12} - \frac{1741107009625195}{6134100528985416} a^{11} + \frac{379024375251413}{766762566123177} a^{10} + \frac{7570673309567}{235926943422516} a^{9} - \frac{91399697073091}{1022350088164236} a^{8} - \frac{334588244110607}{681566725442824} a^{7} - \frac{2171159704532759}{6134100528985416} a^{6} - \frac{444441410084657}{2044700176328472} a^{5} + \frac{14011854280675}{39321157237086} a^{4} + \frac{1453122383333749}{3067050264492708} a^{3} - \frac{141461722907659}{3067050264492708} a^{2} + \frac{7465894582141}{471853886845032} a - \frac{1423077410287063}{6134100528985416}$, $\frac{1}{6134100528985416} a^{30} - \frac{233}{3067050264492708} a^{28} - \frac{62689}{766762566123177} a^{27} + \frac{2157}{26214104824724} a^{26} - \frac{1352274328655}{6134100528985416} a^{25} + \frac{1487328217873}{6134100528985416} a^{24} + \frac{305435164300}{255587522041059} a^{23} - \frac{4322374284299}{3067050264492708} a^{22} - \frac{17195950114}{19660578618543} a^{21} - \frac{658547564555}{3067050264492708} a^{20} + \frac{155913960627599}{2044700176328472} a^{19} + \frac{854513081232769}{6134100528985416} a^{18} + \frac{102787172245679}{1533525132246354} a^{17} + \frac{233500128846695}{1022350088164236} a^{16} - \frac{129088000748065}{1533525132246354} a^{15} + \frac{758157204477877}{3067050264492708} a^{14} - \frac{291541824640753}{2044700176328472} a^{13} + \frac{88789974735289}{471853886845032} a^{12} - \frac{40205677750895}{255587522041059} a^{11} + \frac{3350517859529}{3067050264492708} a^{10} - \frac{6241751188795}{511175044082118} a^{9} - \frac{83751265021955}{235926943422516} a^{8} + \frac{1772789142801205}{6134100528985416} a^{7} - \frac{602933191327637}{2044700176328472} a^{6} + \frac{5312301942677}{766762566123177} a^{5} - \frac{1313089819543039}{3067050264492708} a^{4} - \frac{3043979331703}{6553526206181} a^{3} + \frac{185504834312719}{3067050264492708} a^{2} - \frac{317144638281677}{2044700176328472} a - \frac{1603532328557}{13107052412362}$, $\frac{1}{6134100528985416} a^{31} + \frac{93347}{6134100528985416} a^{28} + \frac{34711}{340783362721412} a^{27} + \frac{375293}{2044700176328472} a^{26} - \frac{766519517291}{6134100528985416} a^{25} - \frac{112694595788}{766762566123177} a^{24} - \frac{380070130799}{766762566123177} a^{23} + \frac{5495320160287}{6134100528985416} a^{22} + \frac{2474053998017}{3067050264492708} a^{21} - \frac{1996231597331}{2044700176328472} a^{20} + \frac{76997339687639}{2044700176328472} a^{19} + \frac{30011372993789}{766762566123177} a^{18} - \frac{69035891915539}{511175044082118} a^{17} - \frac{414075287279423}{2044700176328472} a^{16} + \frac{537611288896777}{3067050264492708} a^{15} + \frac{481970193599803}{6134100528985416} a^{14} + \frac{112454782291861}{6134100528985416} a^{13} + \frac{3172106701271}{1533525132246354} a^{12} + \frac{143889633680165}{1533525132246354} a^{11} + \frac{638843772263285}{2044700176328472} a^{10} + \frac{117178195741231}{1022350088164236} a^{9} + \frac{747924234355655}{6134100528985416} a^{8} + \frac{574656446369891}{2044700176328472} a^{7} - \frac{101476792501979}{255587522041059} a^{6} - \frac{326756683566880}{766762566123177} a^{5} - \frac{2287896755200705}{6134100528985416} a^{4} + \frac{781086356201881}{3067050264492708} a^{3} - \frac{1216191503296769}{6134100528985416} a^{2} - \frac{12096672494867}{766762566123177} a - \frac{67573754726689}{255587522041059}$
Class group and class number
$C_{5}\times C_{60}$, which has order $300$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{734694447181295}{6134100528985416} a^{31} + \frac{1467544286039665}{6134100528985416} a^{30} + \frac{913295386088575}{1533525132246354} a^{29} - \frac{1405601230661515}{511175044082118} a^{28} + \frac{908070429201515}{235926943422516} a^{27} - \frac{7383495044137575}{681566725442824} a^{26} - \frac{173211422005225795}{6134100528985416} a^{25} + \frac{655312902394844795}{3067050264492708} a^{24} - \frac{97518739981560695}{511175044082118} a^{23} - \frac{120762802501129175}{117963471711258} a^{22} - \frac{476815056625518685}{3067050264492708} a^{21} + \frac{7053868649898594755}{2044700176328472} a^{20} - \frac{2409723649869904195}{6134100528985416} a^{19} + \frac{11973647161856610395}{1022350088164236} a^{18} + \frac{24659955313970377085}{1533525132246354} a^{17} - \frac{32286390464798943085}{511175044082118} a^{16} - \frac{474952209144674283235}{3067050264492708} a^{15} + \frac{1365392934602793967505}{6134100528985416} a^{14} - \frac{6899433435810351167}{681566725442824} a^{13} - \frac{131541287373149824745}{3067050264492708} a^{12} + \frac{23645197823405592845}{1533525132246354} a^{11} - \frac{1071632566757249270}{255587522041059} a^{10} + \frac{256220057214321035}{235926943422516} a^{9} + \frac{4547907605312721095}{2044700176328472} a^{8} - \frac{6435101090273447315}{6134100528985416} a^{7} - \frac{166139622284313575}{1022350088164236} a^{6} + \frac{106356179053171225}{766762566123177} a^{5} + \frac{5421365453083735}{117963471711258} a^{4} - \frac{7306660913527325}{1022350088164236} a^{3} + \frac{1457706374984065}{6134100528985416} a^{2} - \frac{2008266058289305}{1533525132246354} a - \frac{5112117658220315}{6134100528985416} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2940410246815.5933 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||