Normalized defining polynomial
\( x^{32} - 13 x^{30} + 129 x^{28} - 1170 x^{26} + 10218 x^{24} - 43485 x^{22} + 171666 x^{20} - 623922 x^{18} + 1799433 x^{16} - 623922 x^{14} + 171666 x^{12} - 43485 x^{10} + 10218 x^{8} - 1170 x^{6} + 129 x^{4} - 13 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86898859856540647588737053982976000000000000000000000000=2^{32}\cdot 5^{24}\cdot 17^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(259,·)$, $\chi_{340}(137,·)$, $\chi_{340}(13,·)$, $\chi_{340}(271,·)$, $\chi_{340}(273,·)$, $\chi_{340}(149,·)$, $\chi_{340}(89,·)$, $\chi_{340}(157,·)$, $\chi_{340}(33,·)$, $\chi_{340}(293,·)$, $\chi_{340}(169,·)$, $\chi_{340}(171,·)$, $\chi_{340}(47,·)$, $\chi_{340}(307,·)$, $\chi_{340}(183,·)$, $\chi_{340}(191,·)$, $\chi_{340}(67,·)$, $\chi_{340}(69,·)$, $\chi_{340}(327,·)$, $\chi_{340}(203,·)$, $\chi_{340}(81,·)$, $\chi_{340}(339,·)$, $\chi_{340}(217,·)$, $\chi_{340}(123,·)$, $\chi_{340}(101,·)$, $\chi_{340}(103,·)$, $\chi_{340}(237,·)$, $\chi_{340}(239,·)$, $\chi_{340}(319,·)$, $\chi_{340}(251,·)$, $\chi_{340}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{9}$, $\frac{1}{10089} a^{20} + \frac{13}{531} a^{10} - \frac{3362}{10089}$, $\frac{1}{10089} a^{21} + \frac{13}{531} a^{11} - \frac{3362}{10089} a$, $\frac{1}{10089} a^{22} + \frac{13}{531} a^{12} - \frac{3362}{10089} a^{2}$, $\frac{1}{10089} a^{23} + \frac{13}{531} a^{13} - \frac{3362}{10089} a^{3}$, $\frac{1}{80712} a^{24} + \frac{1}{24} a^{18} + \frac{68}{531} a^{14} + \frac{1}{8} a^{12} + \frac{1}{3} a^{8} + \frac{3}{8} a^{6} + \frac{2102}{10089} a^{4} + \frac{1}{8}$, $\frac{1}{80712} a^{25} + \frac{1}{24} a^{19} + \frac{68}{531} a^{15} + \frac{1}{8} a^{13} + \frac{1}{3} a^{9} + \frac{3}{8} a^{7} + \frac{2102}{10089} a^{5} + \frac{1}{8} a$, $\frac{1}{15252227352} a^{26} + \frac{2409}{423672982} a^{24} + \frac{23887}{635509473} a^{22} - \frac{339341}{15252227352} a^{20} - \frac{65069}{1133826} a^{18} + \frac{6627656}{100343601} a^{16} + \frac{5088193}{267582936} a^{14} - \frac{3788539}{66895734} a^{12} + \frac{1244789}{100343601} a^{10} - \frac{1811335}{4535304} a^{8} + \frac{1599840475}{3813056838} a^{6} + \frac{144283600}{635509473} a^{4} + \frac{341390987}{5084075784} a^{2} - \frac{33174233}{3813056838}$, $\frac{1}{15252227352} a^{27} + \frac{2409}{423672982} a^{25} + \frac{23887}{635509473} a^{23} - \frac{339341}{15252227352} a^{21} - \frac{65069}{1133826} a^{19} + \frac{6627656}{100343601} a^{17} + \frac{5088193}{267582936} a^{15} - \frac{3788539}{66895734} a^{13} + \frac{1244789}{100343601} a^{11} - \frac{1811335}{4535304} a^{9} + \frac{1599840475}{3813056838} a^{7} + \frac{144283600}{635509473} a^{5} + \frac{341390987}{5084075784} a^{3} - \frac{33174233}{3813056838} a$, $\frac{1}{15252227352} a^{28} - \frac{1}{15252227352} a^{24} - \frac{217879}{5084075784} a^{22} - \frac{23887}{635509473} a^{20} - \frac{53018921}{802748808} a^{18} - \frac{306637}{4535304} a^{16} - \frac{6627656}{100343601} a^{14} - \frac{18694105}{267582936} a^{12} + \frac{4004867}{267582936} a^{10} - \frac{506650663}{1906528419} a^{8} + \frac{1811335}{4535304} a^{6} + \frac{6946337033}{15252227352} a^{4} - \frac{117827660}{635509473} a^{2} - \frac{678694305}{1694691928}$, $\frac{1}{15252227352} a^{29} - \frac{1}{15252227352} a^{25} - \frac{217879}{5084075784} a^{23} - \frac{23887}{635509473} a^{21} - \frac{53018921}{802748808} a^{19} - \frac{306637}{4535304} a^{17} - \frac{6627656}{100343601} a^{15} - \frac{18694105}{267582936} a^{13} + \frac{4004867}{267582936} a^{11} - \frac{506650663}{1906528419} a^{9} + \frac{1811335}{4535304} a^{7} + \frac{6946337033}{15252227352} a^{5} - \frac{117827660}{635509473} a^{3} - \frac{678694305}{1694691928} a$, $\frac{1}{45756682056} a^{30} + \frac{90091}{1906528419} a^{20} + \frac{275838071}{1906528419} a^{10} - \frac{146703017}{775536984}$, $\frac{1}{45756682056} a^{31} + \frac{90091}{1906528419} a^{21} + \frac{275838071}{1906528419} a^{11} - \frac{146703017}{775536984} a$
Class group and class number
$C_{4}\times C_{4}\times C_{20}$, which has order $320$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8471948981}{22878341028} a^{31} - \frac{18355965731}{3813056838} a^{29} + \frac{364293806183}{7626113676} a^{27} - \frac{550676683765}{1271018946} a^{25} + \frac{14427729114643}{3813056838} a^{23} - \frac{122800900479595}{7626113676} a^{21} + \frac{12757240003909}{200687202} a^{19} - \frac{46366976773013}{200687202} a^{17} + \frac{89150319127063}{133791468} a^{15} - \frac{46366976773013}{200687202} a^{13} + \frac{26932325810599}{423672982} a^{11} - \frac{131358420785431}{7626113676} a^{9} + \frac{14427729114643}{3813056838} a^{7} - \frac{550676683765}{1271018946} a^{5} + \frac{364293806183}{7626113676} a^{3} - \frac{110135336753}{22878341028} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19962612841466.996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||