Properties

Label 32.0.847...000.2
Degree $32$
Signature $[0, 16]$
Discriminant $8.476\times 10^{59}$
Root discriminant \(74.60\)
Ramified primes $2,5,11$
Class number $5400$ (GRH)
Class group [3, 15, 120] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111)
 
gp: K = bnfinit(y^32 - 16*y^31 + 176*y^30 - 1400*y^29 + 9140*y^28 - 50008*y^27 + 237760*y^26 - 993304*y^25 + 3698828*y^24 - 12348736*y^23 + 37160956*y^22 - 100999328*y^21 + 248067450*y^20 - 550035696*y^19 + 1098447236*y^18 - 1969257808*y^17 + 3158187595*y^16 - 4516634096*y^15 + 5769439004*y^14 - 6655144784*y^13 + 7182394274*y^12 - 7714898672*y^11 + 8765771372*y^10 - 10407112256*y^9 + 11993265010*y^8 - 12412466704*y^7 + 10863979076*y^6 - 7670495384*y^5 + 4079279422*y^4 - 1470536872*y^3 + 246059100*y^2 + 34978664*y + 6872111, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111)
 

\( x^{32} - 16 x^{31} + 176 x^{30} - 1400 x^{29} + 9140 x^{28} - 50008 x^{27} + 237760 x^{26} + \cdots + 6872111 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(847622907049404564614012839370162176000000000000000000000000\) \(\medspace = 2^{88}\cdot 5^{24}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(74.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}5^{3/4}11^{1/2}\approx 74.60300719070477$
Ramified primes:   \(2\), \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(880=2^{4}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{880}(1,·)$, $\chi_{880}(133,·)$, $\chi_{880}(769,·)$, $\chi_{880}(397,·)$, $\chi_{880}(109,·)$, $\chi_{880}(529,·)$, $\chi_{880}(21,·)$, $\chi_{880}(793,·)$, $\chi_{880}(153,·)$, $\chi_{880}(837,·)$, $\chi_{880}(417,·)$, $\chi_{880}(549,·)$, $\chi_{880}(681,·)$, $\chi_{880}(813,·)$, $\chi_{880}(177,·)$, $\chi_{880}(309,·)$, $\chi_{880}(441,·)$, $\chi_{880}(573,·)$, $\chi_{880}(197,·)$, $\chi_{880}(329,·)$, $\chi_{880}(461,·)$, $\chi_{880}(593,·)$, $\chi_{880}(857,·)$, $\chi_{880}(221,·)$, $\chi_{880}(353,·)$, $\chi_{880}(617,·)$, $\chi_{880}(749,·)$, $\chi_{880}(241,·)$, $\chi_{880}(373,·)$, $\chi_{880}(89,·)$, $\chi_{880}(637,·)$, $\chi_{880}(661,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{9}-\frac{1}{2}a^{5}-\frac{1}{4}a$, $\frac{1}{164}a^{18}-\frac{9}{164}a^{17}+\frac{2}{41}a^{16}-\frac{6}{41}a^{15}+\frac{9}{82}a^{14}-\frac{5}{82}a^{13}-\frac{8}{41}a^{12}-\frac{1}{41}a^{11}-\frac{17}{164}a^{10}+\frac{15}{164}a^{9}+\frac{9}{41}a^{8}-\frac{4}{41}a^{7}-\frac{29}{82}a^{6}-\frac{5}{41}a^{5}+\frac{6}{41}a^{4}+\frac{13}{41}a^{3}+\frac{13}{164}a^{2}-\frac{59}{164}a+\frac{17}{41}$, $\frac{1}{164}a^{19}+\frac{9}{164}a^{17}+\frac{7}{164}a^{16}-\frac{17}{82}a^{15}-\frac{3}{41}a^{14}-\frac{10}{41}a^{13}+\frac{9}{41}a^{12}+\frac{29}{164}a^{11}+\frac{13}{82}a^{10}+\frac{7}{164}a^{9}+\frac{21}{164}a^{8}+\frac{11}{41}a^{7}-\frac{25}{82}a^{6}-\frac{37}{82}a^{5}+\frac{11}{82}a^{4}+\frac{71}{164}a^{3}+\frac{29}{82}a^{2}-\frac{53}{164}a-\frac{3}{164}$, $\frac{1}{164}a^{20}+\frac{3}{82}a^{17}+\frac{17}{164}a^{16}+\frac{10}{41}a^{15}-\frac{19}{82}a^{14}-\frac{19}{82}a^{13}-\frac{11}{164}a^{12}-\frac{5}{41}a^{11}-\frac{1}{41}a^{10}-\frac{8}{41}a^{9}+\frac{7}{164}a^{8}+\frac{3}{41}a^{7}-\frac{11}{41}a^{6}+\frac{19}{82}a^{5}+\frac{19}{164}a^{4}-\frac{3}{82}a^{2}-\frac{23}{82}a+\frac{3}{164}$, $\frac{1}{164}a^{21}-\frac{11}{164}a^{17}-\frac{2}{41}a^{16}+\frac{6}{41}a^{15}+\frac{9}{82}a^{14}-\frac{33}{164}a^{13}+\frac{2}{41}a^{12}+\frac{5}{41}a^{11}-\frac{3}{41}a^{10}-\frac{1}{164}a^{9}-\frac{10}{41}a^{8}+\frac{13}{41}a^{7}-\frac{6}{41}a^{6}-\frac{25}{164}a^{5}+\frac{5}{41}a^{4}-\frac{18}{41}a^{3}-\frac{21}{82}a^{2}+\frac{29}{164}a-\frac{20}{41}$, $\frac{1}{164}a^{22}+\frac{4}{41}a^{17}-\frac{11}{164}a^{16}+\frac{1}{164}a^{14}-\frac{5}{41}a^{13}-\frac{1}{41}a^{12}+\frac{13}{82}a^{11}-\frac{6}{41}a^{10}+\frac{1}{82}a^{9}-\frac{3}{164}a^{8}+\frac{23}{82}a^{7}-\frac{7}{164}a^{6}+\frac{23}{82}a^{5}+\frac{7}{41}a^{4}+\frac{19}{82}a^{3}+\frac{2}{41}a^{2}+\frac{25}{82}a-\frac{31}{164}$, $\frac{1}{5084}a^{23}+\frac{1}{1271}a^{22}-\frac{3}{1271}a^{21}+\frac{3}{5084}a^{20}+\frac{3}{5084}a^{19}-\frac{11}{5084}a^{18}+\frac{257}{2542}a^{17}+\frac{605}{5084}a^{16}+\frac{543}{5084}a^{15}-\frac{147}{2542}a^{14}+\frac{87}{1271}a^{13}-\frac{869}{5084}a^{12}+\frac{1041}{5084}a^{11}-\frac{491}{5084}a^{10}+\frac{202}{1271}a^{9}-\frac{333}{5084}a^{8}+\frac{1711}{5084}a^{7}+\frac{213}{1271}a^{6}+\frac{841}{2542}a^{5}-\frac{23}{124}a^{4}+\frac{2539}{5084}a^{3}+\frac{1539}{5084}a^{2}-\frac{264}{1271}a-\frac{23}{164}$, $\frac{1}{10168}a^{24}-\frac{7}{2542}a^{22}+\frac{5}{2542}a^{21}-\frac{9}{10168}a^{20}+\frac{1}{1271}a^{19}+\frac{189}{5084}a^{17}-\frac{99}{1271}a^{16}-\frac{130}{1271}a^{15}-\frac{228}{1271}a^{14}+\frac{70}{1271}a^{13}+\frac{363}{10168}a^{12}-\frac{268}{1271}a^{11}-\frac{227}{1271}a^{10}+\frac{37}{164}a^{9}-\frac{611}{2542}a^{8}+\frac{336}{1271}a^{7}+\frac{1103}{2542}a^{6}+\frac{564}{1271}a^{5}-\frac{4477}{10168}a^{4}-\frac{337}{1271}a^{3}-\frac{935}{2542}a^{2}+\frac{2329}{5084}a-\frac{71}{328}$, $\frac{1}{10168}a^{25}+\frac{1}{1271}a^{22}+\frac{27}{10168}a^{21}+\frac{15}{5084}a^{20}+\frac{11}{5084}a^{19}+\frac{1}{1271}a^{18}-\frac{237}{5084}a^{17}-\frac{203}{5084}a^{16}-\frac{499}{2542}a^{15}+\frac{221}{2542}a^{14}+\frac{683}{10168}a^{13}-\frac{1117}{5084}a^{12}+\frac{367}{5084}a^{11}+\frac{250}{1271}a^{10}+\frac{1193}{5084}a^{9}-\frac{1117}{5084}a^{8}+\frac{309}{1271}a^{7}+\frac{539}{1271}a^{6}+\frac{583}{10168}a^{5}-\frac{1871}{5084}a^{4}+\frac{1405}{5084}a^{3}+\frac{421}{2542}a^{2}+\frac{409}{10168}a+\frac{53}{164}$, $\frac{1}{10168}a^{26}-\frac{5}{10168}a^{22}+\frac{1}{5084}a^{21}-\frac{1}{5084}a^{20}-\frac{2}{1271}a^{19}-\frac{7}{5084}a^{18}+\frac{281}{2542}a^{17}-\frac{163}{5084}a^{16}-\frac{14}{1271}a^{15}+\frac{2415}{10168}a^{14}+\frac{219}{5084}a^{13}-\frac{63}{5084}a^{12}-\frac{16}{1271}a^{11}+\frac{739}{5084}a^{10}-\frac{113}{2542}a^{9}+\frac{305}{5084}a^{8}-\frac{180}{1271}a^{7}-\frac{4497}{10168}a^{6}+\frac{1941}{5084}a^{5}+\frac{25}{164}a^{4}+\frac{570}{1271}a^{3}+\frac{3225}{10168}a^{2}+\frac{498}{1271}a+\frac{45}{164}$, $\frac{1}{10168}a^{27}-\frac{1}{10168}a^{23}+\frac{9}{5084}a^{22}+\frac{3}{2542}a^{21}-\frac{1}{2542}a^{20}-\frac{1}{5084}a^{19}+\frac{13}{5084}a^{18}+\frac{183}{5084}a^{17}+\frac{503}{5084}a^{16}+\frac{867}{10168}a^{15}+\frac{871}{5084}a^{14}-\frac{51}{1271}a^{13}+\frac{29}{2542}a^{12}+\frac{15}{164}a^{11}-\frac{247}{5084}a^{10}-\frac{931}{5084}a^{9}+\frac{9}{5084}a^{8}+\frac{2099}{10168}a^{7}+\frac{421}{5084}a^{6}-\frac{337}{1271}a^{5}+\frac{269}{1271}a^{4}+\frac{4949}{10168}a^{3}-\frac{541}{5084}a^{2}+\frac{771}{5084}a+\frac{71}{164}$, $\frac{1}{10168}a^{28}-\frac{13}{5084}a^{22}-\frac{2}{1271}a^{21}-\frac{3}{10168}a^{20}-\frac{5}{2542}a^{19}+\frac{3}{5084}a^{18}+\frac{623}{5084}a^{17}-\frac{213}{10168}a^{16}+\frac{106}{1271}a^{15}+\frac{755}{5084}a^{14}-\frac{63}{1271}a^{13}+\frac{1373}{10168}a^{12}+\frac{211}{1271}a^{11}+\frac{317}{5084}a^{10}-\frac{939}{5084}a^{9}-\frac{1729}{10168}a^{8}-\frac{555}{2542}a^{7}-\frac{1943}{5084}a^{6}-\frac{261}{2542}a^{5}+\frac{251}{1271}a^{4}-\frac{295}{1271}a^{3}+\frac{1945}{5084}a^{2}-\frac{939}{5084}a+\frac{113}{328}$, $\frac{1}{10168}a^{29}+\frac{13}{5084}a^{22}-\frac{5}{10168}a^{21}-\frac{1}{2542}a^{20}+\frac{11}{5084}a^{19}+\frac{15}{5084}a^{18}+\frac{937}{10168}a^{17}+\frac{96}{1271}a^{16}-\frac{185}{2542}a^{15}-\frac{509}{5084}a^{14}+\frac{315}{10168}a^{13}-\frac{17}{1271}a^{12}-\frac{69}{5084}a^{11}-\frac{1215}{5084}a^{10}+\frac{1361}{10168}a^{9}-\frac{298}{1271}a^{8}-\frac{102}{1271}a^{7}+\frac{1347}{5084}a^{6}-\frac{2519}{5084}a^{5}+\frac{891}{2542}a^{4}+\frac{1317}{5084}a^{3}+\frac{2111}{5084}a^{2}+\frac{2273}{10168}a+\frac{17}{82}$, $\frac{1}{46\!\cdots\!32}a^{30}-\frac{15}{46\!\cdots\!32}a^{29}+\frac{19\!\cdots\!05}{11\!\cdots\!58}a^{28}-\frac{18\!\cdots\!67}{46\!\cdots\!32}a^{27}+\frac{51\!\cdots\!29}{11\!\cdots\!58}a^{26}+\frac{19\!\cdots\!77}{23\!\cdots\!16}a^{25}+\frac{10\!\cdots\!01}{46\!\cdots\!32}a^{24}+\frac{12\!\cdots\!97}{46\!\cdots\!32}a^{23}-\frac{13\!\cdots\!19}{46\!\cdots\!32}a^{22}+\frac{49\!\cdots\!05}{46\!\cdots\!32}a^{21}-\frac{10\!\cdots\!93}{46\!\cdots\!32}a^{20}+\frac{62\!\cdots\!89}{23\!\cdots\!16}a^{19}+\frac{47\!\cdots\!79}{46\!\cdots\!32}a^{18}-\frac{11\!\cdots\!07}{46\!\cdots\!32}a^{17}-\frac{60\!\cdots\!29}{58\!\cdots\!29}a^{16}-\frac{16\!\cdots\!39}{46\!\cdots\!32}a^{15}+\frac{58\!\cdots\!61}{46\!\cdots\!32}a^{14}-\frac{41\!\cdots\!11}{46\!\cdots\!32}a^{13}+\frac{15\!\cdots\!87}{46\!\cdots\!32}a^{12}-\frac{27\!\cdots\!81}{23\!\cdots\!16}a^{11}-\frac{10\!\cdots\!61}{46\!\cdots\!32}a^{10}-\frac{94\!\cdots\!49}{15\!\cdots\!72}a^{9}+\frac{81\!\cdots\!31}{11\!\cdots\!58}a^{8}+\frac{71\!\cdots\!45}{46\!\cdots\!32}a^{7}-\frac{26\!\cdots\!28}{18\!\cdots\!59}a^{6}-\frac{40\!\cdots\!21}{11\!\cdots\!58}a^{5}-\frac{11\!\cdots\!85}{46\!\cdots\!32}a^{4}-\frac{70\!\cdots\!87}{46\!\cdots\!32}a^{3}-\frac{49\!\cdots\!13}{11\!\cdots\!52}a^{2}-\frac{13\!\cdots\!21}{46\!\cdots\!32}a+\frac{72\!\cdots\!05}{15\!\cdots\!72}$, $\frac{1}{47\!\cdots\!92}a^{31}+\frac{628075}{58\!\cdots\!99}a^{30}+\frac{58\!\cdots\!65}{23\!\cdots\!96}a^{29}+\frac{50\!\cdots\!31}{23\!\cdots\!96}a^{28}+\frac{91\!\cdots\!57}{47\!\cdots\!92}a^{27}+\frac{45\!\cdots\!55}{47\!\cdots\!92}a^{26}+\frac{28\!\cdots\!13}{11\!\cdots\!12}a^{25}-\frac{66\!\cdots\!85}{47\!\cdots\!92}a^{24}+\frac{21\!\cdots\!55}{23\!\cdots\!96}a^{23}-\frac{12\!\cdots\!61}{47\!\cdots\!92}a^{22}-\frac{30\!\cdots\!07}{47\!\cdots\!92}a^{21}+\frac{91\!\cdots\!25}{47\!\cdots\!92}a^{20}-\frac{56\!\cdots\!31}{47\!\cdots\!92}a^{19}+\frac{18\!\cdots\!43}{23\!\cdots\!96}a^{18}+\frac{98\!\cdots\!35}{11\!\cdots\!98}a^{17}-\frac{35\!\cdots\!39}{58\!\cdots\!99}a^{16}+\frac{10\!\cdots\!73}{23\!\cdots\!96}a^{15}+\frac{95\!\cdots\!47}{47\!\cdots\!92}a^{14}+\frac{39\!\cdots\!09}{47\!\cdots\!92}a^{13}+\frac{26\!\cdots\!13}{11\!\cdots\!12}a^{12}-\frac{65\!\cdots\!87}{47\!\cdots\!92}a^{11}+\frac{10\!\cdots\!71}{23\!\cdots\!96}a^{10}-\frac{10\!\cdots\!78}{58\!\cdots\!99}a^{9}+\frac{17\!\cdots\!77}{11\!\cdots\!98}a^{8}+\frac{35\!\cdots\!15}{15\!\cdots\!32}a^{7}+\frac{18\!\cdots\!35}{47\!\cdots\!92}a^{6}+\frac{19\!\cdots\!59}{47\!\cdots\!92}a^{5}+\frac{12\!\cdots\!59}{47\!\cdots\!92}a^{4}-\frac{24\!\cdots\!18}{58\!\cdots\!99}a^{3}+\frac{13\!\cdots\!19}{47\!\cdots\!92}a^{2}+\frac{11\!\cdots\!47}{47\!\cdots\!92}a-\frac{22\!\cdots\!81}{15\!\cdots\!32}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $31$

Class group and class number

$C_{3}\times C_{15}\times C_{120}$, which has order $5400$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{194192354925125763461675690502500983}{44811166263654260723540957054673173758510129} a^{30} - \frac{2912885323876886451925135357537514745}{44811166263654260723540957054673173758510129} a^{29} + \frac{63418558545115333649646449473867041401}{89622332527308521447081914109346347517020258} a^{28} - \frac{246824669566804685633924320457030792062}{44811166263654260723540957054673173758510129} a^{27} + \frac{3197900573584593536532627272873381157315}{89622332527308521447081914109346347517020258} a^{26} - \frac{8653241869555114881866634189503126610537}{44811166263654260723540957054673173758510129} a^{25} + \frac{40929906181041317775639016525631995633084}{44811166263654260723540957054673173758510129} a^{24} - \frac{169944479378273224538908935406041338660478}{44811166263654260723540957054673173758510129} a^{23} + \frac{1261591442224541897958287955662865880123819}{89622332527308521447081914109346347517020258} a^{22} - \frac{2098710235622159753657010492630630804059108}{44811166263654260723540957054673173758510129} a^{21} + \frac{12608078666262685005961960569144459567433021}{89622332527308521447081914109346347517020258} a^{20} - \frac{17105201628100992000656734876638628826252928}{44811166263654260723540957054673173758510129} a^{19} + \frac{41980187720024796604884937936927628725010938}{44811166263654260723540957054673173758510129} a^{18} - \frac{93039242826795624780277600998670191053531937}{44811166263654260723540957054673173758510129} a^{17} + \frac{743131472676813843223698794118884171668964261}{179244665054617042894163828218692695034040516} a^{16} - \frac{333017152962633564409110791536594044682302092}{44811166263654260723540957054673173758510129} a^{15} + \frac{1067542949423722293362987916773003971449478869}{89622332527308521447081914109346347517020258} a^{14} - \frac{761850714459592974621100696042877878340593012}{44811166263654260723540957054673173758510129} a^{13} + \frac{969687921800753698797625934948768786502556446}{44811166263654260723540957054673173758510129} a^{12} - \frac{1109910088239409380810781092803747703985733414}{44811166263654260723540957054673173758510129} a^{11} + \frac{1189102861909915305362161236789960867931746504}{44811166263654260723540957054673173758510129} a^{10} - \frac{1266803229648437062155176836196760397427721103}{44811166263654260723540957054673173758510129} a^{9} + \frac{5800165338555899821606173760952783827412793979}{179244665054617042894163828218692695034040516} a^{8} - \frac{1730503360177402191287600875136514186936077852}{44811166263654260723540957054673173758510129} a^{7} + \frac{4027765820903374965896999145881065091562327057}{89622332527308521447081914109346347517020258} a^{6} - \frac{2053006011294027581172358197574043212817569657}{44811166263654260723540957054673173758510129} a^{5} + \frac{3553418530721639258088457492210739964297200595}{89622332527308521447081914109346347517020258} a^{4} - \frac{39221731504424017134823173294591479543171326}{1445521492375943894307772808215263669629359} a^{3} + \frac{28961543606794317164527232665167150664083551}{2185910549446549303587363758764545061390738} a^{2} - \frac{178261628948738270877236344179507444298251318}{44811166263654260723540957054673173758510129} a + \frac{3720393733609086151030377223700930254368235}{5782085969503775577231091232861054678517436} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{41\!\cdots\!35}{89\!\cdots\!58}a^{30}-\frac{61\!\cdots\!25}{89\!\cdots\!58}a^{29}+\frac{56\!\cdots\!41}{89\!\cdots\!58}a^{28}-\frac{37\!\cdots\!49}{89\!\cdots\!58}a^{27}+\frac{18\!\cdots\!99}{89\!\cdots\!58}a^{26}-\frac{68\!\cdots\!63}{89\!\cdots\!58}a^{25}+\frac{62\!\cdots\!57}{35\!\cdots\!32}a^{24}+\frac{26\!\cdots\!82}{44\!\cdots\!29}a^{23}-\frac{61\!\cdots\!37}{17\!\cdots\!16}a^{22}+\frac{10\!\cdots\!07}{44\!\cdots\!29}a^{21}-\frac{37\!\cdots\!23}{35\!\cdots\!32}a^{20}+\frac{17\!\cdots\!72}{44\!\cdots\!29}a^{19}-\frac{22\!\cdots\!93}{17\!\cdots\!16}a^{18}+\frac{15\!\cdots\!88}{44\!\cdots\!29}a^{17}-\frac{15\!\cdots\!89}{17\!\cdots\!16}a^{16}+\frac{80\!\cdots\!21}{44\!\cdots\!29}a^{15}-\frac{60\!\cdots\!37}{17\!\cdots\!16}a^{14}+\frac{24\!\cdots\!08}{44\!\cdots\!29}a^{13}-\frac{28\!\cdots\!27}{35\!\cdots\!32}a^{12}+\frac{44\!\cdots\!06}{44\!\cdots\!29}a^{11}-\frac{61\!\cdots\!25}{57\!\cdots\!36}a^{10}+\frac{47\!\cdots\!27}{44\!\cdots\!29}a^{9}-\frac{19\!\cdots\!51}{17\!\cdots\!16}a^{8}+\frac{59\!\cdots\!18}{44\!\cdots\!29}a^{7}-\frac{31\!\cdots\!09}{17\!\cdots\!16}a^{6}+\frac{18\!\cdots\!41}{89\!\cdots\!58}a^{5}-\frac{73\!\cdots\!35}{35\!\cdots\!32}a^{4}+\frac{13\!\cdots\!23}{89\!\cdots\!58}a^{3}-\frac{34\!\cdots\!73}{43\!\cdots\!76}a^{2}+\frac{22\!\cdots\!39}{89\!\cdots\!58}a-\frac{45\!\cdots\!17}{11\!\cdots\!72}$, $\frac{23\!\cdots\!03}{58\!\cdots\!29}a^{30}-\frac{35\!\cdots\!45}{58\!\cdots\!29}a^{29}+\frac{15\!\cdots\!79}{23\!\cdots\!16}a^{28}-\frac{58\!\cdots\!63}{11\!\cdots\!58}a^{27}+\frac{74\!\cdots\!65}{23\!\cdots\!16}a^{26}-\frac{98\!\cdots\!45}{58\!\cdots\!29}a^{25}+\frac{36\!\cdots\!27}{46\!\cdots\!32}a^{24}-\frac{18\!\cdots\!68}{58\!\cdots\!29}a^{23}+\frac{67\!\cdots\!88}{58\!\cdots\!29}a^{22}-\frac{22\!\cdots\!69}{58\!\cdots\!29}a^{21}+\frac{51\!\cdots\!53}{46\!\cdots\!32}a^{20}-\frac{17\!\cdots\!43}{58\!\cdots\!29}a^{19}+\frac{52\!\cdots\!43}{75\!\cdots\!36}a^{18}-\frac{17\!\cdots\!95}{11\!\cdots\!58}a^{17}+\frac{16\!\cdots\!55}{58\!\cdots\!29}a^{16}-\frac{28\!\cdots\!29}{58\!\cdots\!29}a^{15}+\frac{43\!\cdots\!66}{58\!\cdots\!29}a^{14}-\frac{59\!\cdots\!46}{58\!\cdots\!29}a^{13}+\frac{57\!\cdots\!89}{46\!\cdots\!32}a^{12}-\frac{79\!\cdots\!89}{58\!\cdots\!29}a^{11}+\frac{33\!\cdots\!59}{23\!\cdots\!16}a^{10}-\frac{18\!\cdots\!89}{11\!\cdots\!58}a^{9}+\frac{10\!\cdots\!19}{58\!\cdots\!29}a^{8}-\frac{12\!\cdots\!74}{58\!\cdots\!29}a^{7}+\frac{28\!\cdots\!87}{11\!\cdots\!58}a^{6}-\frac{13\!\cdots\!03}{58\!\cdots\!29}a^{5}+\frac{84\!\cdots\!11}{46\!\cdots\!32}a^{4}-\frac{12\!\cdots\!21}{11\!\cdots\!58}a^{3}+\frac{11\!\cdots\!23}{28\!\cdots\!38}a^{2}-\frac{96\!\cdots\!65}{11\!\cdots\!58}a-\frac{32\!\cdots\!05}{15\!\cdots\!72}$, $\frac{63\!\cdots\!76}{18\!\cdots\!29}a^{31}-\frac{61\!\cdots\!97}{11\!\cdots\!98}a^{30}+\frac{66\!\cdots\!99}{11\!\cdots\!98}a^{29}-\frac{26\!\cdots\!84}{58\!\cdots\!99}a^{28}+\frac{34\!\cdots\!89}{11\!\cdots\!98}a^{27}-\frac{93\!\cdots\!96}{58\!\cdots\!99}a^{26}+\frac{88\!\cdots\!01}{11\!\cdots\!98}a^{25}-\frac{14\!\cdots\!05}{47\!\cdots\!92}a^{24}+\frac{68\!\cdots\!08}{58\!\cdots\!99}a^{23}-\frac{91\!\cdots\!93}{23\!\cdots\!96}a^{22}+\frac{68\!\cdots\!53}{58\!\cdots\!99}a^{21}-\frac{14\!\cdots\!33}{47\!\cdots\!92}a^{20}+\frac{45\!\cdots\!88}{58\!\cdots\!99}a^{19}-\frac{40\!\cdots\!23}{23\!\cdots\!96}a^{18}+\frac{20\!\cdots\!91}{58\!\cdots\!99}a^{17}-\frac{73\!\cdots\!95}{11\!\cdots\!98}a^{16}+\frac{59\!\cdots\!27}{58\!\cdots\!99}a^{15}-\frac{34\!\cdots\!73}{23\!\cdots\!96}a^{14}+\frac{11\!\cdots\!44}{58\!\cdots\!99}a^{13}-\frac{10\!\cdots\!29}{47\!\cdots\!92}a^{12}+\frac{14\!\cdots\!96}{58\!\cdots\!99}a^{11}-\frac{62\!\cdots\!81}{23\!\cdots\!96}a^{10}+\frac{42\!\cdots\!98}{14\!\cdots\!39}a^{9}-\frac{13\!\cdots\!21}{37\!\cdots\!58}a^{8}+\frac{23\!\cdots\!42}{58\!\cdots\!99}a^{7}-\frac{10\!\cdots\!37}{23\!\cdots\!96}a^{6}+\frac{45\!\cdots\!41}{11\!\cdots\!98}a^{5}-\frac{13\!\cdots\!09}{47\!\cdots\!92}a^{4}+\frac{20\!\cdots\!29}{11\!\cdots\!98}a^{3}-\frac{16\!\cdots\!41}{23\!\cdots\!96}a^{2}+\frac{19\!\cdots\!75}{11\!\cdots\!98}a-\frac{56\!\cdots\!93}{15\!\cdots\!32}$, $\frac{30\!\cdots\!95}{22\!\cdots\!31}a^{30}-\frac{45\!\cdots\!25}{22\!\cdots\!31}a^{29}+\frac{19\!\cdots\!79}{88\!\cdots\!24}a^{28}-\frac{74\!\cdots\!03}{44\!\cdots\!62}a^{27}+\frac{94\!\cdots\!63}{88\!\cdots\!24}a^{26}-\frac{24\!\cdots\!29}{44\!\cdots\!62}a^{25}+\frac{46\!\cdots\!69}{17\!\cdots\!48}a^{24}-\frac{23\!\cdots\!56}{22\!\cdots\!31}a^{23}+\frac{16\!\cdots\!93}{44\!\cdots\!62}a^{22}-\frac{27\!\cdots\!11}{22\!\cdots\!31}a^{21}+\frac{20\!\cdots\!91}{56\!\cdots\!08}a^{20}-\frac{20\!\cdots\!41}{22\!\cdots\!31}a^{19}+\frac{99\!\cdots\!21}{44\!\cdots\!62}a^{18}-\frac{21\!\cdots\!09}{44\!\cdots\!62}a^{17}+\frac{40\!\cdots\!07}{44\!\cdots\!62}a^{16}-\frac{34\!\cdots\!47}{22\!\cdots\!31}a^{15}+\frac{51\!\cdots\!51}{22\!\cdots\!31}a^{14}-\frac{68\!\cdots\!71}{22\!\cdots\!31}a^{13}+\frac{65\!\cdots\!01}{17\!\cdots\!48}a^{12}-\frac{87\!\cdots\!11}{22\!\cdots\!31}a^{11}+\frac{18\!\cdots\!89}{44\!\cdots\!62}a^{10}-\frac{20\!\cdots\!91}{44\!\cdots\!62}a^{9}+\frac{24\!\cdots\!21}{44\!\cdots\!62}a^{8}-\frac{14\!\cdots\!90}{22\!\cdots\!31}a^{7}+\frac{31\!\cdots\!79}{44\!\cdots\!62}a^{6}-\frac{14\!\cdots\!49}{22\!\cdots\!31}a^{5}+\frac{87\!\cdots\!87}{17\!\cdots\!48}a^{4}-\frac{11\!\cdots\!41}{44\!\cdots\!62}a^{3}+\frac{13\!\cdots\!53}{21\!\cdots\!64}a^{2}+\frac{21\!\cdots\!23}{22\!\cdots\!31}a-\frac{16\!\cdots\!99}{56\!\cdots\!08}$, $\frac{79\!\cdots\!27}{23\!\cdots\!96}a^{31}-\frac{24\!\cdots\!53}{47\!\cdots\!92}a^{30}+\frac{26\!\cdots\!37}{47\!\cdots\!92}a^{29}-\frac{25\!\cdots\!75}{58\!\cdots\!99}a^{28}+\frac{13\!\cdots\!93}{47\!\cdots\!92}a^{27}-\frac{71\!\cdots\!59}{47\!\cdots\!92}a^{26}+\frac{16\!\cdots\!89}{23\!\cdots\!96}a^{25}-\frac{13\!\cdots\!23}{47\!\cdots\!92}a^{24}+\frac{50\!\cdots\!85}{47\!\cdots\!92}a^{23}-\frac{41\!\cdots\!65}{11\!\cdots\!98}a^{22}+\frac{49\!\cdots\!05}{47\!\cdots\!92}a^{21}-\frac{13\!\cdots\!67}{47\!\cdots\!92}a^{20}+\frac{15\!\cdots\!91}{23\!\cdots\!96}a^{19}-\frac{68\!\cdots\!71}{47\!\cdots\!92}a^{18}+\frac{13\!\cdots\!53}{47\!\cdots\!92}a^{17}-\frac{11\!\cdots\!81}{23\!\cdots\!96}a^{16}+\frac{36\!\cdots\!41}{47\!\cdots\!92}a^{15}-\frac{12\!\cdots\!97}{11\!\cdots\!98}a^{14}+\frac{62\!\cdots\!41}{47\!\cdots\!92}a^{13}-\frac{69\!\cdots\!51}{47\!\cdots\!92}a^{12}+\frac{36\!\cdots\!75}{23\!\cdots\!96}a^{11}-\frac{79\!\cdots\!91}{47\!\cdots\!92}a^{10}+\frac{92\!\cdots\!89}{47\!\cdots\!92}a^{9}-\frac{55\!\cdots\!39}{23\!\cdots\!96}a^{8}+\frac{12\!\cdots\!67}{47\!\cdots\!92}a^{7}-\frac{12\!\cdots\!03}{47\!\cdots\!92}a^{6}+\frac{12\!\cdots\!80}{58\!\cdots\!99}a^{5}-\frac{62\!\cdots\!11}{47\!\cdots\!92}a^{4}+\frac{26\!\cdots\!09}{47\!\cdots\!92}a^{3}-\frac{76\!\cdots\!53}{58\!\cdots\!99}a^{2}-\frac{22\!\cdots\!05}{47\!\cdots\!92}a-\frac{25\!\cdots\!81}{15\!\cdots\!32}$, $\frac{63\!\cdots\!76}{18\!\cdots\!29}a^{31}-\frac{18\!\cdots\!51}{37\!\cdots\!58}a^{30}+\frac{58\!\cdots\!59}{11\!\cdots\!98}a^{29}-\frac{22\!\cdots\!88}{58\!\cdots\!99}a^{28}+\frac{27\!\cdots\!41}{11\!\cdots\!98}a^{27}-\frac{71\!\cdots\!54}{58\!\cdots\!99}a^{26}+\frac{65\!\cdots\!09}{11\!\cdots\!98}a^{25}-\frac{10\!\cdots\!25}{47\!\cdots\!92}a^{24}+\frac{46\!\cdots\!48}{58\!\cdots\!99}a^{23}-\frac{59\!\cdots\!65}{23\!\cdots\!96}a^{22}+\frac{42\!\cdots\!16}{58\!\cdots\!99}a^{21}-\frac{87\!\cdots\!57}{47\!\cdots\!92}a^{20}+\frac{25\!\cdots\!68}{58\!\cdots\!99}a^{19}-\frac{21\!\cdots\!57}{23\!\cdots\!96}a^{18}+\frac{98\!\cdots\!86}{58\!\cdots\!99}a^{17}-\frac{32\!\cdots\!53}{11\!\cdots\!98}a^{16}+\frac{24\!\cdots\!43}{58\!\cdots\!99}a^{15}-\frac{12\!\cdots\!77}{23\!\cdots\!96}a^{14}+\frac{35\!\cdots\!20}{58\!\cdots\!99}a^{13}-\frac{30\!\cdots\!37}{47\!\cdots\!92}a^{12}+\frac{39\!\cdots\!32}{58\!\cdots\!99}a^{11}-\frac{17\!\cdots\!37}{23\!\cdots\!96}a^{10}+\frac{53\!\cdots\!74}{58\!\cdots\!99}a^{9}-\frac{12\!\cdots\!53}{11\!\cdots\!98}a^{8}+\frac{68\!\cdots\!30}{58\!\cdots\!99}a^{7}-\frac{23\!\cdots\!67}{23\!\cdots\!96}a^{6}+\frac{79\!\cdots\!17}{11\!\cdots\!98}a^{5}-\frac{13\!\cdots\!21}{47\!\cdots\!92}a^{4}+\frac{41\!\cdots\!65}{11\!\cdots\!98}a^{3}+\frac{10\!\cdots\!47}{23\!\cdots\!96}a^{2}-\frac{56\!\cdots\!19}{11\!\cdots\!98}a-\frac{23\!\cdots\!17}{15\!\cdots\!32}$, $\frac{63\!\cdots\!76}{18\!\cdots\!29}a^{31}-\frac{30\!\cdots\!21}{58\!\cdots\!99}a^{30}+\frac{32\!\cdots\!87}{58\!\cdots\!99}a^{29}-\frac{10\!\cdots\!13}{23\!\cdots\!96}a^{28}+\frac{33\!\cdots\!53}{11\!\cdots\!98}a^{27}-\frac{35\!\cdots\!55}{23\!\cdots\!96}a^{26}+\frac{42\!\cdots\!83}{58\!\cdots\!99}a^{25}-\frac{13\!\cdots\!57}{47\!\cdots\!92}a^{24}+\frac{64\!\cdots\!56}{58\!\cdots\!99}a^{23}-\frac{51\!\cdots\!64}{14\!\cdots\!39}a^{22}+\frac{63\!\cdots\!71}{58\!\cdots\!99}a^{21}-\frac{13\!\cdots\!35}{47\!\cdots\!92}a^{20}+\frac{41\!\cdots\!21}{58\!\cdots\!99}a^{19}-\frac{36\!\cdots\!23}{23\!\cdots\!96}a^{18}+\frac{36\!\cdots\!97}{11\!\cdots\!98}a^{17}-\frac{32\!\cdots\!97}{58\!\cdots\!99}a^{16}+\frac{50\!\cdots\!27}{58\!\cdots\!99}a^{15}-\frac{72\!\cdots\!46}{58\!\cdots\!99}a^{14}+\frac{91\!\cdots\!38}{58\!\cdots\!99}a^{13}-\frac{83\!\cdots\!47}{47\!\cdots\!92}a^{12}+\frac{11\!\cdots\!43}{58\!\cdots\!99}a^{11}-\frac{48\!\cdots\!81}{23\!\cdots\!96}a^{10}+\frac{27\!\cdots\!31}{11\!\cdots\!98}a^{9}-\frac{16\!\cdots\!65}{58\!\cdots\!99}a^{8}+\frac{18\!\cdots\!30}{58\!\cdots\!99}a^{7}-\frac{38\!\cdots\!49}{11\!\cdots\!98}a^{6}+\frac{16\!\cdots\!65}{58\!\cdots\!99}a^{5}-\frac{92\!\cdots\!01}{47\!\cdots\!92}a^{4}+\frac{12\!\cdots\!63}{11\!\cdots\!98}a^{3}-\frac{44\!\cdots\!31}{11\!\cdots\!98}a^{2}+\frac{73\!\cdots\!93}{11\!\cdots\!98}a-\frac{49\!\cdots\!85}{15\!\cdots\!32}$, $\frac{49\!\cdots\!39}{58\!\cdots\!99}a^{31}-\frac{30\!\cdots\!85}{23\!\cdots\!96}a^{30}+\frac{84\!\cdots\!92}{58\!\cdots\!99}a^{29}-\frac{52\!\cdots\!65}{47\!\cdots\!92}a^{28}+\frac{42\!\cdots\!46}{58\!\cdots\!99}a^{27}-\frac{92\!\cdots\!05}{23\!\cdots\!96}a^{26}+\frac{10\!\cdots\!79}{58\!\cdots\!99}a^{25}-\frac{43\!\cdots\!37}{57\!\cdots\!56}a^{24}+\frac{16\!\cdots\!19}{58\!\cdots\!99}a^{23}-\frac{22\!\cdots\!49}{23\!\cdots\!96}a^{22}+\frac{32\!\cdots\!61}{11\!\cdots\!98}a^{21}-\frac{35\!\cdots\!73}{47\!\cdots\!92}a^{20}+\frac{21\!\cdots\!03}{11\!\cdots\!98}a^{19}-\frac{94\!\cdots\!61}{23\!\cdots\!96}a^{18}+\frac{93\!\cdots\!93}{11\!\cdots\!98}a^{17}-\frac{66\!\cdots\!75}{47\!\cdots\!92}a^{16}+\frac{13\!\cdots\!32}{58\!\cdots\!99}a^{15}-\frac{75\!\cdots\!83}{23\!\cdots\!96}a^{14}+\frac{48\!\cdots\!53}{11\!\cdots\!98}a^{13}-\frac{22\!\cdots\!25}{47\!\cdots\!92}a^{12}+\frac{60\!\cdots\!09}{11\!\cdots\!98}a^{11}-\frac{13\!\cdots\!49}{23\!\cdots\!96}a^{10}+\frac{74\!\cdots\!35}{11\!\cdots\!98}a^{9}-\frac{35\!\cdots\!39}{47\!\cdots\!92}a^{8}+\frac{49\!\cdots\!59}{58\!\cdots\!99}a^{7}-\frac{16\!\cdots\!35}{18\!\cdots\!29}a^{6}+\frac{22\!\cdots\!27}{28\!\cdots\!78}a^{5}-\frac{32\!\cdots\!60}{58\!\cdots\!99}a^{4}+\frac{36\!\cdots\!79}{11\!\cdots\!98}a^{3}-\frac{14\!\cdots\!91}{11\!\cdots\!98}a^{2}+\frac{28\!\cdots\!05}{11\!\cdots\!98}a+\frac{53\!\cdots\!65}{15\!\cdots\!32}$, $\frac{23\!\cdots\!84}{14\!\cdots\!39}a^{31}-\frac{15\!\cdots\!79}{58\!\cdots\!99}a^{30}+\frac{32\!\cdots\!77}{11\!\cdots\!98}a^{29}-\frac{50\!\cdots\!49}{23\!\cdots\!96}a^{28}+\frac{81\!\cdots\!75}{58\!\cdots\!99}a^{27}-\frac{17\!\cdots\!15}{23\!\cdots\!96}a^{26}+\frac{40\!\cdots\!01}{11\!\cdots\!98}a^{25}-\frac{82\!\cdots\!17}{58\!\cdots\!99}a^{24}+\frac{30\!\cdots\!28}{58\!\cdots\!99}a^{23}-\frac{39\!\cdots\!23}{23\!\cdots\!96}a^{22}+\frac{28\!\cdots\!83}{58\!\cdots\!99}a^{21}-\frac{15\!\cdots\!03}{11\!\cdots\!98}a^{20}+\frac{18\!\cdots\!91}{58\!\cdots\!99}a^{19}-\frac{38\!\cdots\!58}{58\!\cdots\!99}a^{18}+\frac{14\!\cdots\!39}{11\!\cdots\!98}a^{17}-\frac{51\!\cdots\!83}{23\!\cdots\!96}a^{16}+\frac{19\!\cdots\!38}{58\!\cdots\!99}a^{15}-\frac{10\!\cdots\!39}{23\!\cdots\!96}a^{14}+\frac{31\!\cdots\!91}{58\!\cdots\!99}a^{13}-\frac{34\!\cdots\!80}{58\!\cdots\!99}a^{12}+\frac{35\!\cdots\!91}{58\!\cdots\!99}a^{11}-\frac{38\!\cdots\!57}{58\!\cdots\!99}a^{10}+\frac{92\!\cdots\!03}{11\!\cdots\!98}a^{9}-\frac{22\!\cdots\!37}{23\!\cdots\!96}a^{8}+\frac{62\!\cdots\!50}{58\!\cdots\!99}a^{7}-\frac{23\!\cdots\!99}{23\!\cdots\!96}a^{6}+\frac{89\!\cdots\!85}{11\!\cdots\!98}a^{5}-\frac{97\!\cdots\!07}{23\!\cdots\!96}a^{4}+\frac{72\!\cdots\!22}{58\!\cdots\!99}a^{3}+\frac{87\!\cdots\!71}{13\!\cdots\!16}a^{2}-\frac{14\!\cdots\!55}{58\!\cdots\!99}a+\frac{42\!\cdots\!03}{75\!\cdots\!16}$, $\frac{71\!\cdots\!57}{58\!\cdots\!99}a^{31}-\frac{22\!\cdots\!29}{11\!\cdots\!98}a^{30}+\frac{12\!\cdots\!22}{58\!\cdots\!99}a^{29}-\frac{79\!\cdots\!91}{47\!\cdots\!92}a^{28}+\frac{64\!\cdots\!05}{58\!\cdots\!99}a^{27}-\frac{70\!\cdots\!33}{11\!\cdots\!98}a^{26}+\frac{54\!\cdots\!50}{18\!\cdots\!29}a^{25}-\frac{27\!\cdots\!89}{23\!\cdots\!96}a^{24}+\frac{25\!\cdots\!17}{58\!\cdots\!99}a^{23}-\frac{17\!\cdots\!25}{11\!\cdots\!98}a^{22}+\frac{25\!\cdots\!71}{58\!\cdots\!99}a^{21}-\frac{54\!\cdots\!01}{47\!\cdots\!92}a^{20}+\frac{33\!\cdots\!85}{11\!\cdots\!98}a^{19}-\frac{11\!\cdots\!80}{18\!\cdots\!29}a^{18}+\frac{17\!\cdots\!66}{14\!\cdots\!39}a^{17}-\frac{10\!\cdots\!03}{47\!\cdots\!92}a^{16}+\frac{19\!\cdots\!06}{58\!\cdots\!99}a^{15}-\frac{53\!\cdots\!19}{11\!\cdots\!98}a^{14}+\frac{32\!\cdots\!95}{58\!\cdots\!99}a^{13}-\frac{29\!\cdots\!13}{47\!\cdots\!92}a^{12}+\frac{75\!\cdots\!55}{11\!\cdots\!98}a^{11}-\frac{40\!\cdots\!19}{58\!\cdots\!99}a^{10}+\frac{48\!\cdots\!10}{58\!\cdots\!99}a^{9}-\frac{46\!\cdots\!95}{47\!\cdots\!92}a^{8}+\frac{66\!\cdots\!99}{58\!\cdots\!99}a^{7}-\frac{64\!\cdots\!58}{58\!\cdots\!99}a^{6}+\frac{50\!\cdots\!53}{58\!\cdots\!99}a^{5}-\frac{11\!\cdots\!31}{23\!\cdots\!96}a^{4}+\frac{22\!\cdots\!35}{11\!\cdots\!98}a^{3}-\frac{38\!\cdots\!29}{11\!\cdots\!98}a^{2}-\frac{12\!\cdots\!34}{58\!\cdots\!99}a-\frac{12\!\cdots\!87}{15\!\cdots\!32}$, $\frac{48\!\cdots\!19}{58\!\cdots\!99}a^{31}-\frac{79\!\cdots\!76}{58\!\cdots\!99}a^{30}+\frac{34\!\cdots\!11}{23\!\cdots\!96}a^{29}-\frac{27\!\cdots\!05}{23\!\cdots\!96}a^{28}+\frac{45\!\cdots\!88}{58\!\cdots\!99}a^{27}-\frac{19\!\cdots\!61}{47\!\cdots\!92}a^{26}+\frac{46\!\cdots\!15}{23\!\cdots\!96}a^{25}-\frac{31\!\cdots\!89}{37\!\cdots\!58}a^{24}+\frac{17\!\cdots\!16}{58\!\cdots\!99}a^{23}-\frac{47\!\cdots\!85}{47\!\cdots\!92}a^{22}+\frac{35\!\cdots\!77}{11\!\cdots\!98}a^{21}-\frac{19\!\cdots\!69}{23\!\cdots\!96}a^{20}+\frac{11\!\cdots\!50}{58\!\cdots\!99}a^{19}-\frac{16\!\cdots\!61}{37\!\cdots\!58}a^{18}+\frac{20\!\cdots\!85}{23\!\cdots\!96}a^{17}-\frac{88\!\cdots\!23}{58\!\cdots\!99}a^{16}+\frac{33\!\cdots\!78}{14\!\cdots\!39}a^{15}-\frac{15\!\cdots\!29}{47\!\cdots\!92}a^{14}+\frac{47\!\cdots\!15}{11\!\cdots\!98}a^{13}-\frac{10\!\cdots\!63}{23\!\cdots\!96}a^{12}+\frac{28\!\cdots\!06}{58\!\cdots\!99}a^{11}-\frac{30\!\cdots\!18}{58\!\cdots\!99}a^{10}+\frac{14\!\cdots\!13}{23\!\cdots\!96}a^{9}-\frac{85\!\cdots\!81}{11\!\cdots\!98}a^{8}+\frac{48\!\cdots\!21}{58\!\cdots\!99}a^{7}-\frac{38\!\cdots\!85}{47\!\cdots\!92}a^{6}+\frac{15\!\cdots\!99}{23\!\cdots\!96}a^{5}-\frac{49\!\cdots\!79}{11\!\cdots\!98}a^{4}+\frac{11\!\cdots\!00}{58\!\cdots\!99}a^{3}-\frac{22\!\cdots\!23}{47\!\cdots\!92}a^{2}-\frac{13\!\cdots\!77}{11\!\cdots\!98}a+\frac{40\!\cdots\!71}{37\!\cdots\!58}$, $\frac{13\!\cdots\!97}{11\!\cdots\!98}a^{31}-\frac{30\!\cdots\!95}{47\!\cdots\!92}a^{30}+\frac{46\!\cdots\!45}{23\!\cdots\!96}a^{29}+\frac{16\!\cdots\!03}{47\!\cdots\!92}a^{28}-\frac{22\!\cdots\!55}{47\!\cdots\!92}a^{27}+\frac{46\!\cdots\!79}{11\!\cdots\!98}a^{26}-\frac{11\!\cdots\!09}{47\!\cdots\!92}a^{25}+\frac{29\!\cdots\!09}{23\!\cdots\!96}a^{24}-\frac{26\!\cdots\!57}{47\!\cdots\!92}a^{23}+\frac{10\!\cdots\!61}{47\!\cdots\!92}a^{22}-\frac{34\!\cdots\!49}{47\!\cdots\!92}a^{21}+\frac{10\!\cdots\!31}{47\!\cdots\!92}a^{20}-\frac{14\!\cdots\!27}{23\!\cdots\!96}a^{19}+\frac{68\!\cdots\!31}{47\!\cdots\!92}a^{18}-\frac{37\!\cdots\!03}{11\!\cdots\!98}a^{17}+\frac{28\!\cdots\!63}{47\!\cdots\!92}a^{16}-\frac{49\!\cdots\!85}{47\!\cdots\!92}a^{15}+\frac{75\!\cdots\!77}{47\!\cdots\!92}a^{14}-\frac{10\!\cdots\!97}{47\!\cdots\!92}a^{13}+\frac{11\!\cdots\!91}{47\!\cdots\!92}a^{12}-\frac{62\!\cdots\!09}{23\!\cdots\!96}a^{11}+\frac{12\!\cdots\!75}{47\!\cdots\!92}a^{10}-\frac{17\!\cdots\!64}{58\!\cdots\!99}a^{9}+\frac{17\!\cdots\!79}{47\!\cdots\!92}a^{8}-\frac{21\!\cdots\!53}{47\!\cdots\!92}a^{7}+\frac{29\!\cdots\!82}{58\!\cdots\!99}a^{6}-\frac{69\!\cdots\!01}{15\!\cdots\!32}a^{5}+\frac{18\!\cdots\!21}{58\!\cdots\!99}a^{4}-\frac{70\!\cdots\!75}{47\!\cdots\!92}a^{3}+\frac{15\!\cdots\!03}{47\!\cdots\!92}a^{2}+\frac{22\!\cdots\!53}{47\!\cdots\!92}a+\frac{12\!\cdots\!43}{15\!\cdots\!32}$, $\frac{24\!\cdots\!73}{47\!\cdots\!92}a^{31}-\frac{35\!\cdots\!77}{47\!\cdots\!92}a^{30}+\frac{94\!\cdots\!29}{11\!\cdots\!98}a^{29}-\frac{14\!\cdots\!65}{23\!\cdots\!96}a^{28}+\frac{18\!\cdots\!19}{47\!\cdots\!92}a^{27}-\frac{95\!\cdots\!73}{47\!\cdots\!92}a^{26}+\frac{21\!\cdots\!59}{23\!\cdots\!96}a^{25}-\frac{70\!\cdots\!78}{18\!\cdots\!29}a^{24}+\frac{31\!\cdots\!65}{23\!\cdots\!96}a^{23}-\frac{10\!\cdots\!93}{23\!\cdots\!96}a^{22}+\frac{14\!\cdots\!29}{11\!\cdots\!98}a^{21}-\frac{18\!\cdots\!34}{58\!\cdots\!99}a^{20}+\frac{35\!\cdots\!21}{47\!\cdots\!92}a^{19}-\frac{74\!\cdots\!11}{47\!\cdots\!92}a^{18}+\frac{70\!\cdots\!97}{23\!\cdots\!96}a^{17}-\frac{59\!\cdots\!31}{11\!\cdots\!98}a^{16}+\frac{17\!\cdots\!13}{23\!\cdots\!96}a^{15}-\frac{23\!\cdots\!63}{23\!\cdots\!96}a^{14}+\frac{13\!\cdots\!77}{11\!\cdots\!98}a^{13}-\frac{15\!\cdots\!35}{11\!\cdots\!98}a^{12}+\frac{63\!\cdots\!05}{47\!\cdots\!92}a^{11}-\frac{71\!\cdots\!63}{47\!\cdots\!92}a^{10}+\frac{42\!\cdots\!87}{23\!\cdots\!96}a^{9}-\frac{25\!\cdots\!65}{11\!\cdots\!98}a^{8}+\frac{10\!\cdots\!49}{47\!\cdots\!92}a^{7}-\frac{10\!\cdots\!17}{47\!\cdots\!92}a^{6}+\frac{18\!\cdots\!15}{11\!\cdots\!98}a^{5}-\frac{22\!\cdots\!99}{23\!\cdots\!96}a^{4}+\frac{95\!\cdots\!55}{23\!\cdots\!96}a^{3}-\frac{25\!\cdots\!47}{23\!\cdots\!96}a^{2}+\frac{49\!\cdots\!27}{18\!\cdots\!29}a-\frac{16\!\cdots\!66}{18\!\cdots\!29}$, $\frac{24\!\cdots\!73}{23\!\cdots\!96}a^{31}-\frac{75\!\cdots\!17}{47\!\cdots\!92}a^{30}+\frac{81\!\cdots\!69}{47\!\cdots\!92}a^{29}-\frac{31\!\cdots\!89}{23\!\cdots\!96}a^{28}+\frac{20\!\cdots\!25}{23\!\cdots\!96}a^{27}-\frac{21\!\cdots\!97}{47\!\cdots\!92}a^{26}+\frac{10\!\cdots\!89}{47\!\cdots\!92}a^{25}-\frac{41\!\cdots\!53}{47\!\cdots\!92}a^{24}+\frac{75\!\cdots\!07}{23\!\cdots\!96}a^{23}-\frac{61\!\cdots\!45}{58\!\cdots\!99}a^{22}+\frac{18\!\cdots\!44}{58\!\cdots\!99}a^{21}-\frac{38\!\cdots\!05}{47\!\cdots\!92}a^{20}+\frac{11\!\cdots\!85}{58\!\cdots\!99}a^{19}-\frac{20\!\cdots\!81}{47\!\cdots\!92}a^{18}+\frac{39\!\cdots\!87}{47\!\cdots\!92}a^{17}-\frac{34\!\cdots\!91}{23\!\cdots\!96}a^{16}+\frac{52\!\cdots\!51}{23\!\cdots\!96}a^{15}-\frac{36\!\cdots\!79}{11\!\cdots\!98}a^{14}+\frac{45\!\cdots\!81}{11\!\cdots\!98}a^{13}-\frac{20\!\cdots\!13}{47\!\cdots\!92}a^{12}+\frac{13\!\cdots\!59}{28\!\cdots\!78}a^{11}-\frac{23\!\cdots\!09}{47\!\cdots\!92}a^{10}+\frac{27\!\cdots\!83}{47\!\cdots\!92}a^{9}-\frac{16\!\cdots\!45}{23\!\cdots\!96}a^{8}+\frac{11\!\cdots\!99}{14\!\cdots\!39}a^{7}-\frac{35\!\cdots\!39}{47\!\cdots\!92}a^{6}+\frac{29\!\cdots\!95}{47\!\cdots\!92}a^{5}-\frac{18\!\cdots\!11}{47\!\cdots\!92}a^{4}+\frac{43\!\cdots\!41}{23\!\cdots\!96}a^{3}-\frac{65\!\cdots\!81}{11\!\cdots\!98}a^{2}+\frac{44\!\cdots\!53}{23\!\cdots\!96}a+\frac{12\!\cdots\!25}{15\!\cdots\!32}$, $\frac{19\!\cdots\!51}{61\!\cdots\!68}a^{31}-\frac{16\!\cdots\!77}{30\!\cdots\!84}a^{30}+\frac{36\!\cdots\!63}{61\!\cdots\!68}a^{29}-\frac{15\!\cdots\!91}{30\!\cdots\!84}a^{28}+\frac{99\!\cdots\!25}{30\!\cdots\!84}a^{27}-\frac{11\!\cdots\!53}{61\!\cdots\!68}a^{26}+\frac{13\!\cdots\!13}{15\!\cdots\!42}a^{25}-\frac{11\!\cdots\!29}{30\!\cdots\!84}a^{24}+\frac{84\!\cdots\!55}{61\!\cdots\!68}a^{23}-\frac{28\!\cdots\!75}{61\!\cdots\!68}a^{22}+\frac{86\!\cdots\!61}{61\!\cdots\!68}a^{21}-\frac{29\!\cdots\!62}{76\!\cdots\!71}a^{20}+\frac{58\!\cdots\!87}{61\!\cdots\!68}a^{19}-\frac{16\!\cdots\!38}{76\!\cdots\!71}a^{18}+\frac{26\!\cdots\!63}{61\!\cdots\!68}a^{17}-\frac{23\!\cdots\!89}{30\!\cdots\!84}a^{16}+\frac{77\!\cdots\!39}{61\!\cdots\!68}a^{15}-\frac{11\!\cdots\!47}{61\!\cdots\!68}a^{14}+\frac{14\!\cdots\!09}{61\!\cdots\!68}a^{13}-\frac{39\!\cdots\!81}{15\!\cdots\!42}a^{12}+\frac{16\!\cdots\!31}{61\!\cdots\!68}a^{11}-\frac{43\!\cdots\!89}{15\!\cdots\!42}a^{10}+\frac{19\!\cdots\!39}{61\!\cdots\!68}a^{9}-\frac{29\!\cdots\!65}{74\!\cdots\!24}a^{8}+\frac{72\!\cdots\!13}{15\!\cdots\!42}a^{7}-\frac{30\!\cdots\!33}{61\!\cdots\!68}a^{6}+\frac{12\!\cdots\!07}{30\!\cdots\!84}a^{5}-\frac{75\!\cdots\!41}{30\!\cdots\!84}a^{4}+\frac{19\!\cdots\!23}{19\!\cdots\!28}a^{3}-\frac{11\!\cdots\!79}{61\!\cdots\!68}a^{2}-\frac{17\!\cdots\!13}{61\!\cdots\!68}a+\frac{37\!\cdots\!03}{49\!\cdots\!82}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 122816592296668.77 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 122816592296668.77 \cdot 5400}{10\cdot\sqrt{847622907049404564614012839370162176000000000000000000000000}}\cr\approx \mathstrut & 0.425037603482518 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 176*x^30 - 1400*x^29 + 9140*x^28 - 50008*x^27 + 237760*x^26 - 993304*x^25 + 3698828*x^24 - 12348736*x^23 + 37160956*x^22 - 100999328*x^21 + 248067450*x^20 - 550035696*x^19 + 1098447236*x^18 - 1969257808*x^17 + 3158187595*x^16 - 4516634096*x^15 + 5769439004*x^14 - 6655144784*x^13 + 7182394274*x^12 - 7714898672*x^11 + 8765771372*x^10 - 10407112256*x^9 + 11993265010*x^8 - 12412466704*x^7 + 10863979076*x^6 - 7670495384*x^5 + 4079279422*x^4 - 1470536872*x^3 + 246059100*x^2 + 34978664*x + 6872111);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$

Intermediate fields

\(\Q(\sqrt{-22}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{2}, \sqrt{-11})\), 4.0.247808.2, \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{5}, \sqrt{-22})\), \(\Q(\sqrt{10}, \sqrt{-22})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-55})\), 4.0.6195200.5, 4.4.51200.1, \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{10}, \sqrt{-11})\), 4.4.968000.2, \(\Q(\zeta_{5})\), 4.4.15125.1, 4.0.8000.2, 4.0.256000.4, 4.4.30976000.2, 4.0.256000.2, 4.4.30976000.1, 8.0.61408804864.2, 8.0.37480960000.9, 8.0.38380503040000.48, 8.0.38380503040000.63, 8.0.38380503040000.23, 8.8.2621440000.1, 8.0.38380503040000.59, 8.0.937024000000.5, 8.0.937024000000.1, 8.0.959512576000000.38, 8.0.959512576000000.36, 8.8.937024000000.1, 8.0.64000000.2, 8.0.65536000000.1, 8.8.959512576000000.2, 8.0.937024000000.2, 8.0.228765625.1, 8.0.959512576000000.12, 8.0.959512576000000.19, 16.0.1473063013603449241600000000.1, 16.0.878013976576000000000000.1, 16.0.920664383502155776000000000000.8, 16.0.920664383502155776000000000000.5, 16.0.920664383502155776000000000000.6, 16.16.920664383502155776000000000000.2, 16.0.4294967296000000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{8}$ R ${\href{/padicField/7.4.0.1}{4} }^{8}$ R ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{8}$ ${\href{/padicField/31.1.0.1}{1} }^{32}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$4$$4$$44$
Deg $16$$4$$4$$44$
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(11\) Copy content Toggle raw display 11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$