Normalized defining polynomial
\(x^{32} - 6 x^{30} - 64 x^{29} + 18 x^{28} + 120 x^{27} + 884 x^{26} + 1360 x^{25} + 2453 x^{24} - 592 x^{23} + 11300 x^{22} + 12152 x^{21} - 15370 x^{20} + 39248 x^{19} + 6590 x^{18} - 25344 x^{17} + 75876 x^{16} - 25344 x^{15} + 6590 x^{14} + 39248 x^{13} - 15370 x^{12} + 12152 x^{11} + 11300 x^{10} - 592 x^{9} + 2453 x^{8} + 1360 x^{7} + 884 x^{6} + 120 x^{5} + 18 x^{4} - 64 x^{3} - 6 x^{2} + 1\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(845222867573683465013147373404160000000000000000\)\(\medspace = 2^{64}\cdot 3^{16}\cdot 5^{16}\cdot 17^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $31.46$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{5}$, $\frac{1}{56} a^{18} - \frac{3}{14} a^{17} - \frac{1}{7} a^{16} + \frac{1}{28} a^{15} + \frac{3}{14} a^{13} - \frac{5}{56} a^{12} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{9}{56} a^{6} + \frac{3}{14} a^{5} + \frac{1}{28} a^{3} - \frac{1}{7} a^{2} - \frac{3}{14} a - \frac{13}{56}$, $\frac{1}{56} a^{19} - \frac{3}{14} a^{17} - \frac{5}{28} a^{16} - \frac{1}{14} a^{15} + \frac{3}{14} a^{14} - \frac{1}{56} a^{13} - \frac{1}{14} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{9}{56} a^{7} + \frac{1}{7} a^{6} + \frac{1}{14} a^{5} - \frac{13}{28} a^{4} - \frac{3}{14} a^{3} + \frac{1}{14} a^{2} - \frac{17}{56} a + \frac{3}{14}$, $\frac{1}{112} a^{20} - \frac{1}{112} a^{18} + \frac{13}{56} a^{17} - \frac{1}{14} a^{16} - \frac{11}{56} a^{15} - \frac{1}{112} a^{14} - \frac{3}{28} a^{13} - \frac{1}{16} a^{12} - \frac{1}{14} a^{11} - \frac{3}{7} a^{10} - \frac{3}{14} a^{9} + \frac{33}{112} a^{8} - \frac{3}{7} a^{7} + \frac{47}{112} a^{6} - \frac{3}{56} a^{5} - \frac{5}{14} a^{4} + \frac{13}{56} a^{3} - \frac{7}{16} a^{2} + \frac{5}{28} a + \frac{25}{112}$, $\frac{1}{112} a^{21} - \frac{1}{112} a^{19} + \frac{3}{14} a^{17} + \frac{9}{56} a^{16} + \frac{3}{112} a^{15} - \frac{3}{28} a^{14} + \frac{17}{112} a^{13} + \frac{5}{56} a^{12} - \frac{3}{7} a^{11} - \frac{5}{14} a^{10} - \frac{15}{112} a^{9} + \frac{3}{7} a^{8} + \frac{47}{112} a^{7} - \frac{1}{7} a^{6} + \frac{5}{14} a^{5} - \frac{15}{56} a^{4} - \frac{45}{112} a^{3} + \frac{1}{28} a^{2} + \frac{1}{112} a + \frac{1}{56}$, $\frac{1}{112} a^{22} - \frac{1}{112} a^{18} - \frac{1}{28} a^{17} + \frac{19}{112} a^{16} - \frac{13}{56} a^{15} + \frac{1}{7} a^{14} - \frac{5}{56} a^{13} + \frac{9}{112} a^{12} - \frac{3}{7} a^{11} + \frac{17}{112} a^{10} + \frac{5}{14} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} - \frac{17}{112} a^{6} + \frac{3}{28} a^{5} - \frac{29}{112} a^{4} + \frac{19}{56} a^{3} + \frac{2}{7} a^{2} + \frac{15}{56} a - \frac{55}{112}$, $\frac{1}{112} a^{23} - \frac{1}{112} a^{19} + \frac{27}{112} a^{17} - \frac{1}{56} a^{16} + \frac{3}{14} a^{15} - \frac{5}{56} a^{14} + \frac{1}{112} a^{13} - \frac{3}{28} a^{12} + \frac{17}{112} a^{11} + \frac{1}{14} a^{10} - \frac{3}{7} a^{9} + \frac{1}{7} a^{8} - \frac{17}{112} a^{7} + \frac{3}{7} a^{6} - \frac{37}{112} a^{5} - \frac{9}{56} a^{4} + \frac{5}{14} a^{3} - \frac{1}{56} a^{2} - \frac{47}{112} a + \frac{1}{28}$, $\frac{1}{112} a^{24} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{2} a^{9} + \frac{1}{4} a^{3} - \frac{29}{112}$, $\frac{1}{112} a^{25} - \frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{2} a^{10} + \frac{1}{4} a^{4} - \frac{29}{112} a$, $\frac{1}{224} a^{26} - \frac{1}{224} a^{24} - \frac{1}{8} a^{17} - \frac{1}{8} a^{15} + \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{27}{224} a^{2} + \frac{1}{4} a - \frac{27}{224}$, $\frac{1}{5152} a^{27} - \frac{3}{2576} a^{26} + \frac{19}{5152} a^{25} - \frac{1}{644} a^{24} - \frac{1}{368} a^{23} - \frac{5}{1288} a^{22} - \frac{3}{1288} a^{21} + \frac{9}{2576} a^{20} + \frac{3}{2576} a^{19} + \frac{19}{2576} a^{18} + \frac{321}{2576} a^{17} + \frac{297}{1288} a^{16} - \frac{171}{1288} a^{15} - \frac{37}{368} a^{14} + \frac{431}{2576} a^{13} + \frac{3}{2576} a^{12} - \frac{855}{2576} a^{11} - \frac{311}{1288} a^{10} + \frac{3}{184} a^{9} - \frac{1055}{2576} a^{8} - \frac{773}{2576} a^{7} + \frac{799}{2576} a^{6} + \frac{15}{368} a^{5} + \frac{31}{1288} a^{4} - \frac{813}{5152} a^{3} - \frac{7}{23} a^{2} - \frac{2421}{5152} a + \frac{5}{368}$, $\frac{1}{81091593856} a^{28} - \frac{1111753}{20272898464} a^{27} - \frac{338535}{20272898464} a^{26} - \frac{3747431}{881430368} a^{25} - \frac{80899163}{81091593856} a^{24} + \frac{4339765}{1448064176} a^{23} - \frac{178418691}{40545796928} a^{22} + \frac{29115297}{10136449232} a^{21} - \frac{10236391}{2534112308} a^{20} + \frac{1454717}{194931716} a^{19} + \frac{202137853}{40545796928} a^{18} - \frac{2297265381}{10136449232} a^{17} + \frac{4877298729}{40545796928} a^{16} - \frac{284774923}{1267056154} a^{15} + \frac{28668265}{266748664} a^{14} + \frac{61062193}{5068224616} a^{13} + \frac{10039962313}{40545796928} a^{12} - \frac{4996645883}{10136449232} a^{11} + \frac{1778246291}{5792256704} a^{10} + \frac{5721727}{97465858} a^{9} + \frac{540657589}{2534112308} a^{8} + \frac{2484528465}{10136449232} a^{7} + \frac{4323172117}{40545796928} a^{6} + \frac{704762111}{1448064176} a^{5} + \frac{29368319025}{81091593856} a^{4} - \frac{8270901473}{20272898464} a^{3} + \frac{3186976635}{20272898464} a^{2} - \frac{8894114573}{20272898464} a - \frac{37791327027}{81091593856}$, $\frac{1}{81091593856} a^{29} - \frac{460923}{10136449232} a^{27} - \frac{1321595}{1066994656} a^{26} + \frac{287359505}{81091593856} a^{25} + \frac{5382685}{2896128352} a^{24} + \frac{1839051}{445558208} a^{23} - \frac{167829}{724032088} a^{22} - \frac{1709339}{5068224616} a^{21} + \frac{1793945}{5068224616} a^{20} + \frac{8418663}{1762860736} a^{19} - \frac{4700739}{633528077} a^{18} - \frac{6877769571}{40545796928} a^{17} + \frac{1166494529}{10136449232} a^{16} + \frac{251010219}{5068224616} a^{15} - \frac{426674951}{5068224616} a^{14} - \frac{700302207}{3118907456} a^{13} - \frac{15585905}{110178796} a^{12} + \frac{14764061969}{40545796928} a^{11} + \frac{4548494245}{10136449232} a^{10} + \frac{84710701}{266748664} a^{9} - \frac{4670451529}{10136449232} a^{8} + \frac{14845826313}{40545796928} a^{7} + \frac{1915780785}{5068224616} a^{6} - \frac{2616019239}{81091593856} a^{5} + \frac{8127778}{27544699} a^{4} + \frac{3079714913}{10136449232} a^{3} + \frac{626917365}{2896128352} a^{2} - \frac{16544892471}{81091593856} a + \frac{7335871601}{20272898464}$, $\frac{1}{2857622031826505216} a^{30} + \frac{7557813}{1428811015913252608} a^{29} - \frac{10877665}{2857622031826505216} a^{28} - \frac{30063986275}{408698803178848} a^{27} + \frac{147726305923767}{408231718832357888} a^{26} - \frac{3753261647483415}{1428811015913252608} a^{25} + \frac{10552949579894697}{2857622031826505216} a^{24} - \frac{1746753062829013}{714405507956626304} a^{23} + \frac{333003251230917}{204115859416178944} a^{22} + \frac{37445089707585}{51028964854044736} a^{21} + \frac{309169187703741}{1428811015913252608} a^{20} + \frac{95300854747025}{54954269842817408} a^{19} + \frac{2243703231320651}{357202753978313152} a^{18} - \frac{154562974572713771}{714405507956626304} a^{17} + \frac{5199026856205393}{46090677932685568} a^{16} + \frac{1808830912262347}{89300688494578288} a^{15} - \frac{3124694560078001}{46090677932685568} a^{14} + \frac{309905414443333}{8027028179287936} a^{13} - \frac{56506682964527247}{357202753978313152} a^{12} - \frac{247235924789838483}{714405507956626304} a^{11} - \frac{4171579863897565}{8874602583312128} a^{10} - \frac{138908262911127279}{357202753978313152} a^{9} + \frac{42970402637792811}{204115859416178944} a^{8} - \frac{186209450362627121}{714405507956626304} a^{7} - \frac{25106462550943229}{219817079371269632} a^{6} + \frac{360351479244494121}{1428811015913252608} a^{5} + \frac{1049766112180212751}{2857622031826505216} a^{4} - \frac{1663409196355825}{7765277260398112} a^{3} + \frac{294246258922823537}{2857622031826505216} a^{2} - \frac{143153873608074723}{1428811015913252608} a + \frac{837251644659234383}{2857622031826505216}$, $\frac{1}{134308235495845745152} a^{31} + \frac{1}{134308235495845745152} a^{30} - \frac{213940715}{134308235495845745152} a^{29} + \frac{220682697}{134308235495845745152} a^{28} + \frac{2576441744470865}{134308235495845745152} a^{27} - \frac{38584408073228855}{134308235495845745152} a^{26} - \frac{594076212624305}{618931960810349056} a^{25} - \frac{33901823380287689}{10331402730449672704} a^{24} + \frac{57676022324789437}{67154117747922872576} a^{23} + \frac{170706917901480641}{67154117747922872576} a^{22} + \frac{1760963526035657}{919919421204422912} a^{21} - \frac{5184893738845981}{2919744249909690112} a^{20} - \frac{13120292747606999}{1975121110233025664} a^{19} + \frac{9141844003432157}{1767213624945338752} a^{18} + \frac{54728212052014767}{737957337889262336} a^{17} + \frac{10147613037298776873}{67154117747922872576} a^{16} + \frac{652457099918357207}{2919744249909690112} a^{15} + \frac{1050533910678523079}{9593445392560410368} a^{14} - \frac{26886492109286451}{459959710602211456} a^{13} + \frac{2075000263966150659}{33577058873961436288} a^{12} + \frac{25560203727769855033}{67154117747922872576} a^{11} - \frac{1718300521073974547}{5165701365224836352} a^{10} - \frac{27720020322200391527}{67154117747922872576} a^{9} + \frac{7150490362531648537}{67154117747922872576} a^{8} + \frac{5332445055830891965}{19186890785120820736} a^{7} - \frac{55498703234344568141}{134308235495845745152} a^{6} - \frac{53125331466494798531}{134308235495845745152} a^{5} + \frac{62384158746191320889}{134308235495845745152} a^{4} - \frac{51947126542941615903}{134308235495845745152} a^{3} + \frac{222781091810137447}{1128640634418871808} a^{2} - \frac{28093785124115018507}{134308235495845745152} a - \frac{2868581203943125971}{10331402730449672704}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{4689709082965751773}{16788529436980718144} a^{31} + \frac{137330444560895671}{1475914675778524672} a^{30} - \frac{112427100269645412029}{67154117747922872576} a^{29} - \frac{1431214514979260061}{77679719777817088} a^{28} - \frac{15763122802287323847}{16788529436980718144} a^{27} + \frac{4701631034306733264861}{134308235495845745152} a^{26} + \frac{17285813354663541881447}{67154117747922872576} a^{25} + \frac{62136172616210342802389}{134308235495845745152} a^{24} + \frac{27359139605703927634185}{33577058873961436288} a^{23} + \frac{5068993295620531954471}{67154117747922872576} a^{22} + \frac{325445315530141484321}{104276580353917504} a^{21} + \frac{300291824516369256227481}{67154117747922872576} a^{20} - \frac{105790582833901725307985}{33577058873961436288} a^{19} + \frac{162606792401010161338191}{16788529436980718144} a^{18} + \frac{26841638801142444672805}{4796722696280205184} a^{17} - \frac{63155204188786321786795}{9593445392560410368} a^{16} + \frac{23153940802969166122039}{1199180674070051296} a^{15} - \frac{786171987849048597059}{67154117747922872576} a^{14} - \frac{23144614610867763688777}{33577058873961436288} a^{13} + \frac{208568707183896889075829}{16788529436980718144} a^{12} - \frac{4614049092466058863499}{4796722696280205184} a^{11} + \frac{140781568582344069447511}{67154117747922872576} a^{10} + \frac{4670122682691082425955}{987560555116512832} a^{9} + \frac{47048325903156833396441}{67154117747922872576} a^{8} + \frac{3764659978284758030489}{4796722696280205184} a^{7} + \frac{4369682326649553862205}{5839488499819380224} a^{6} + \frac{3410347376610787077089}{9593445392560410368} a^{5} + \frac{2814498244283265128245}{19186890785120820736} a^{4} + \frac{596657558119808319585}{16788529436980718144} a^{3} - \frac{145571178965217497269}{19186890785120820736} a^{2} - \frac{369875046445990575197}{67154117747922872576} a - \frac{35660673875419454845}{134308235495845745152} \) (order $24$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 124577213214.25456 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times D_4$ (as 32T273):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^3\times D_4$ |
Character table for $C_2^3\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |