Properties

Label 32.0.802...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $8.028\times 10^{56}$
Root discriminant \(60.02\)
Ramified primes $2,5,7,29,521$
Class number $336$ (GRH)
Class group [2, 2, 84] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256)
 
gp: K = bnfinit(y^32 - 36*y^30 + 576*y^28 - 5474*y^26 + 34020*y^24 - 130166*y^22 + 187427*y^20 + 377425*y^18 + 1235554*y^16 - 19352440*y^14 + 35136537*y^12 + 25383639*y^10 + 8167525*y^8 + 1500436*y^6 + 160416*y^4 + 8704*y^2 + 256, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256)
 

\( x^{32} - 36 x^{30} + 576 x^{28} - 5474 x^{26} + 34020 x^{24} - 130166 x^{22} + 187427 x^{20} + \cdots + 256 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(802755791064235699686694954262517410037760000000000000000\) \(\medspace = 2^{32}\cdot 5^{16}\cdot 7^{16}\cdot 29^{8}\cdot 521^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(60.02\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{1/2}7^{1/2}29^{1/2}521^{1/2}\approx 1454.3933443192045$
Ramified primes:   \(2\), \(5\), \(7\), \(29\), \(521\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{20}a^{20}+\frac{1}{20}a^{18}-\frac{1}{2}a^{16}-\frac{2}{5}a^{14}+\frac{1}{4}a^{12}-\frac{3}{20}a^{10}+\frac{1}{4}a^{8}+\frac{1}{10}a^{6}+\frac{1}{20}a^{2}-\frac{1}{5}$, $\frac{1}{20}a^{21}+\frac{1}{20}a^{19}-\frac{1}{2}a^{17}-\frac{2}{5}a^{15}+\frac{1}{4}a^{13}-\frac{3}{20}a^{11}+\frac{1}{4}a^{9}+\frac{1}{10}a^{7}+\frac{1}{20}a^{3}-\frac{1}{5}a$, $\frac{1}{20}a^{22}+\frac{9}{20}a^{18}+\frac{1}{10}a^{16}-\frac{7}{20}a^{14}-\frac{2}{5}a^{12}+\frac{2}{5}a^{10}-\frac{3}{20}a^{8}-\frac{1}{10}a^{6}+\frac{1}{20}a^{4}-\frac{1}{4}a^{2}+\frac{1}{5}$, $\frac{1}{40}a^{23}+\frac{9}{40}a^{19}+\frac{1}{20}a^{17}+\frac{13}{40}a^{15}-\frac{1}{5}a^{13}+\frac{1}{5}a^{11}+\frac{17}{40}a^{9}-\frac{1}{20}a^{7}+\frac{1}{40}a^{5}-\frac{1}{8}a^{3}+\frac{1}{10}a$, $\frac{1}{400}a^{24}-\frac{3}{200}a^{22}-\frac{1}{400}a^{20}+\frac{49}{200}a^{18}+\frac{21}{400}a^{16}+\frac{97}{200}a^{14}+\frac{3}{200}a^{12}-\frac{1}{400}a^{10}-\frac{97}{200}a^{8}-\frac{127}{400}a^{6}-\frac{51}{400}a^{4}+\frac{23}{50}a^{2}+\frac{11}{25}$, $\frac{1}{400}a^{25}+\frac{1}{100}a^{23}-\frac{1}{400}a^{21}-\frac{3}{100}a^{19}-\frac{159}{400}a^{17}-\frac{19}{100}a^{15}-\frac{37}{200}a^{13}-\frac{121}{400}a^{11}+\frac{11}{25}a^{9}+\frac{53}{400}a^{7}-\frac{41}{400}a^{5}+\frac{67}{200}a^{3}+\frac{1}{25}a$, $\frac{1}{400}a^{26}+\frac{3}{400}a^{22}-\frac{1}{50}a^{20}+\frac{69}{400}a^{18}-\frac{1}{2}a^{16}+\frac{9}{40}a^{14}+\frac{3}{80}a^{12}+\frac{1}{20}a^{10}+\frac{89}{400}a^{8}+\frac{107}{400}a^{6}-\frac{41}{200}a^{4}+\frac{9}{20}a^{2}+\frac{1}{25}$, $\frac{1}{800}a^{27}-\frac{1}{800}a^{25}+\frac{9}{800}a^{23}+\frac{13}{800}a^{21}-\frac{9}{800}a^{19}-\frac{21}{800}a^{17}-\frac{33}{100}a^{15}-\frac{291}{800}a^{13}-\frac{39}{800}a^{11}-\frac{17}{800}a^{9}+\frac{137}{400}a^{7}-\frac{31}{800}a^{5}-\frac{12}{25}a^{3}+\frac{1}{5}a$, $\frac{1}{123200}a^{28}+\frac{127}{123200}a^{26}+\frac{101}{123200}a^{24}+\frac{1}{24640}a^{22}+\frac{9}{3520}a^{20}+\frac{4937}{11200}a^{18}+\frac{897}{30800}a^{16}-\frac{1633}{11200}a^{14}-\frac{46047}{123200}a^{12}-\frac{18189}{123200}a^{10}-\frac{11331}{61600}a^{8}+\frac{43741}{123200}a^{6}+\frac{3747}{30800}a^{4}-\frac{213}{1925}a^{2}-\frac{184}{385}$, $\frac{1}{123200}a^{29}-\frac{27}{123200}a^{27}-\frac{53}{123200}a^{25}+\frac{467}{123200}a^{23}-\frac{197}{17600}a^{21}+\frac{2319}{11200}a^{19}+\frac{177}{61600}a^{17}-\frac{3369}{11200}a^{15}-\frac{3081}{123200}a^{13}-\frac{475}{4928}a^{11}+\frac{9927}{30800}a^{9}+\frac{40661}{123200}a^{7}+\frac{3547}{12320}a^{5}-\frac{349}{3850}a^{3}-\frac{227}{1925}a$, $\frac{1}{54\!\cdots\!00}a^{30}+\frac{29\!\cdots\!51}{78\!\cdots\!00}a^{28}+\frac{58\!\cdots\!91}{54\!\cdots\!00}a^{26}-\frac{33\!\cdots\!81}{54\!\cdots\!00}a^{24}-\frac{12\!\cdots\!99}{54\!\cdots\!00}a^{22}+\frac{12\!\cdots\!53}{54\!\cdots\!00}a^{20}-\frac{12\!\cdots\!53}{54\!\cdots\!60}a^{18}+\frac{23\!\cdots\!41}{54\!\cdots\!00}a^{16}+\frac{13\!\cdots\!51}{11\!\cdots\!00}a^{14}-\frac{43\!\cdots\!79}{10\!\cdots\!20}a^{12}+\frac{16\!\cdots\!63}{12\!\cdots\!75}a^{10}+\frac{17\!\cdots\!41}{10\!\cdots\!20}a^{8}+\frac{18\!\cdots\!27}{99\!\cdots\!52}a^{6}+\frac{11\!\cdots\!83}{68\!\cdots\!00}a^{4}-\frac{10\!\cdots\!27}{44\!\cdots\!00}a^{2}-\frac{21\!\cdots\!19}{85\!\cdots\!25}$, $\frac{1}{10\!\cdots\!00}a^{31}-\frac{42\!\cdots\!61}{19\!\cdots\!00}a^{29}+\frac{33\!\cdots\!48}{17\!\cdots\!05}a^{27}+\frac{58\!\cdots\!43}{10\!\cdots\!20}a^{25}+\frac{17\!\cdots\!03}{27\!\cdots\!00}a^{23}-\frac{87\!\cdots\!03}{54\!\cdots\!00}a^{21}-\frac{13\!\cdots\!69}{10\!\cdots\!00}a^{19}+\frac{31\!\cdots\!41}{10\!\cdots\!00}a^{17}-\frac{77\!\cdots\!59}{78\!\cdots\!00}a^{15}+\frac{95\!\cdots\!53}{27\!\cdots\!68}a^{13}-\frac{13\!\cdots\!69}{15\!\cdots\!00}a^{11}+\frac{49\!\cdots\!59}{21\!\cdots\!40}a^{9}+\frac{14\!\cdots\!89}{90\!\cdots\!00}a^{7}+\frac{34\!\cdots\!37}{85\!\cdots\!25}a^{5}+\frac{19\!\cdots\!27}{12\!\cdots\!00}a^{3}-\frac{39\!\cdots\!34}{85\!\cdots\!25}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{84}$, which has order $336$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $336$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{5945630903775229538143}{4242200574267219677565760} a^{31} - \frac{3845098749743501047643}{75753581683343208527960} a^{29} + \frac{8677572088192427724277353}{10605501435668049193914400} a^{27} - \frac{5201750661132708003938721}{662843839729253074619650} a^{25} + \frac{104693730651633492521389131}{2121100287133609838782880} a^{23} - \frac{255770620815320018774002251}{1325687679458506149239300} a^{21} + \frac{6435020180840887438115772143}{21211002871336098387828800} a^{19} + \frac{9908962750212619757195042613}{21211002871336098387828800} a^{17} + \frac{2462300047752335071601892423}{1515071633666864170559200} a^{15} - \frac{291469780144098682827657848691}{10605501435668049193914400} a^{13} + \frac{167094083982982171509378618891}{3030143267333728341118400} a^{11} + \frac{513284839738472348017290010487}{21211002871336098387828800} a^{9} + \frac{10010186315825421500695109901}{1928272988303281671620800} a^{7} + \frac{215458182764132067667005041}{424220057426721967756576} a^{5} - \frac{266796412822408368901553}{34433446219701458421800} a^{3} - \frac{2827473926570193786666923}{662843839729253074619650} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{44\!\cdots\!07}{73\!\cdots\!00}a^{30}-\frac{22\!\cdots\!27}{10\!\cdots\!20}a^{28}+\frac{12\!\cdots\!99}{36\!\cdots\!00}a^{26}-\frac{28\!\cdots\!47}{91\!\cdots\!00}a^{24}+\frac{67\!\cdots\!67}{36\!\cdots\!00}a^{22}-\frac{29\!\cdots\!51}{45\!\cdots\!00}a^{20}+\frac{41\!\cdots\!03}{73\!\cdots\!00}a^{18}+\frac{47\!\cdots\!31}{14\!\cdots\!80}a^{16}+\frac{23\!\cdots\!93}{26\!\cdots\!80}a^{14}-\frac{41\!\cdots\!11}{36\!\cdots\!00}a^{12}+\frac{19\!\cdots\!01}{14\!\cdots\!00}a^{10}+\frac{23\!\cdots\!49}{73\!\cdots\!00}a^{8}+\frac{86\!\cdots\!49}{73\!\cdots\!00}a^{6}+\frac{15\!\cdots\!81}{91\!\cdots\!00}a^{4}+\frac{13\!\cdots\!63}{13\!\cdots\!40}a^{2}-\frac{14\!\cdots\!22}{11\!\cdots\!75}$, $\frac{65\!\cdots\!37}{10\!\cdots\!00}a^{31}-\frac{16\!\cdots\!03}{78\!\cdots\!00}a^{29}+\frac{19\!\cdots\!17}{54\!\cdots\!00}a^{27}-\frac{91\!\cdots\!51}{27\!\cdots\!00}a^{25}+\frac{45\!\cdots\!45}{21\!\cdots\!44}a^{23}-\frac{44\!\cdots\!59}{54\!\cdots\!60}a^{21}+\frac{13\!\cdots\!01}{10\!\cdots\!00}a^{19}+\frac{22\!\cdots\!53}{10\!\cdots\!00}a^{17}+\frac{27\!\cdots\!29}{39\!\cdots\!00}a^{15}-\frac{64\!\cdots\!97}{54\!\cdots\!00}a^{13}+\frac{36\!\cdots\!29}{15\!\cdots\!00}a^{11}+\frac{11\!\cdots\!27}{10\!\cdots\!00}a^{9}+\frac{31\!\cdots\!29}{99\!\cdots\!00}a^{7}+\frac{39\!\cdots\!83}{68\!\cdots\!00}a^{5}+\frac{11\!\cdots\!61}{17\!\cdots\!92}a^{3}+\frac{87\!\cdots\!29}{17\!\cdots\!50}a$, $\frac{23\!\cdots\!07}{17\!\cdots\!00}a^{30}-\frac{15\!\cdots\!57}{31\!\cdots\!00}a^{28}+\frac{34\!\cdots\!87}{44\!\cdots\!00}a^{26}-\frac{65\!\cdots\!57}{88\!\cdots\!00}a^{24}+\frac{25\!\cdots\!11}{55\!\cdots\!50}a^{22}-\frac{15\!\cdots\!31}{88\!\cdots\!00}a^{20}+\frac{47\!\cdots\!17}{17\!\cdots\!00}a^{18}+\frac{85\!\cdots\!23}{17\!\cdots\!00}a^{16}+\frac{20\!\cdots\!43}{12\!\cdots\!00}a^{14}-\frac{11\!\cdots\!21}{44\!\cdots\!00}a^{12}+\frac{17\!\cdots\!47}{36\!\cdots\!00}a^{10}+\frac{52\!\cdots\!13}{17\!\cdots\!00}a^{8}+\frac{13\!\cdots\!27}{17\!\cdots\!00}a^{6}+\frac{97\!\cdots\!09}{88\!\cdots\!20}a^{4}+\frac{53\!\cdots\!43}{78\!\cdots\!35}a^{2}-\frac{84\!\cdots\!22}{55\!\cdots\!45}$, $\frac{13\!\cdots\!77}{24\!\cdots\!00}a^{31}-\frac{90\!\cdots\!21}{15\!\cdots\!00}a^{30}-\frac{13\!\cdots\!57}{70\!\cdots\!00}a^{29}+\frac{11\!\cdots\!19}{54\!\cdots\!00}a^{28}+\frac{14\!\cdots\!81}{49\!\cdots\!00}a^{27}-\frac{32\!\cdots\!09}{94\!\cdots\!00}a^{26}-\frac{13\!\cdots\!09}{49\!\cdots\!00}a^{25}+\frac{24\!\cdots\!43}{75\!\cdots\!00}a^{24}+\frac{16\!\cdots\!03}{99\!\cdots\!20}a^{23}-\frac{15\!\cdots\!59}{75\!\cdots\!80}a^{22}-\frac{29\!\cdots\!03}{49\!\cdots\!00}a^{21}+\frac{58\!\cdots\!17}{75\!\cdots\!00}a^{20}+\frac{30\!\cdots\!71}{49\!\cdots\!00}a^{19}-\frac{16\!\cdots\!23}{15\!\cdots\!00}a^{18}+\frac{66\!\cdots\!37}{24\!\cdots\!80}a^{17}-\frac{34\!\cdots\!73}{15\!\cdots\!00}a^{16}+\frac{10\!\cdots\!99}{14\!\cdots\!60}a^{15}-\frac{79\!\cdots\!83}{10\!\cdots\!00}a^{14}-\frac{50\!\cdots\!49}{49\!\cdots\!00}a^{13}+\frac{27\!\cdots\!17}{23\!\cdots\!25}a^{12}+\frac{93\!\cdots\!01}{70\!\cdots\!00}a^{11}-\frac{64\!\cdots\!09}{30\!\cdots\!00}a^{10}+\frac{12\!\cdots\!81}{49\!\cdots\!60}a^{9}-\frac{23\!\cdots\!31}{15\!\cdots\!00}a^{8}+\frac{49\!\cdots\!11}{49\!\cdots\!00}a^{7}-\frac{13\!\cdots\!43}{27\!\cdots\!20}a^{6}+\frac{55\!\cdots\!63}{24\!\cdots\!00}a^{5}-\frac{74\!\cdots\!41}{94\!\cdots\!00}a^{4}+\frac{23\!\cdots\!61}{88\!\cdots\!00}a^{3}-\frac{18\!\cdots\!97}{24\!\cdots\!60}a^{2}+\frac{92\!\cdots\!51}{77\!\cdots\!75}a-\frac{43\!\cdots\!16}{23\!\cdots\!25}$, $\frac{33\!\cdots\!57}{10\!\cdots\!00}a^{31}+\frac{13\!\cdots\!49}{75\!\cdots\!00}a^{30}-\frac{84\!\cdots\!73}{78\!\cdots\!00}a^{29}-\frac{35\!\cdots\!65}{54\!\cdots\!92}a^{28}+\frac{95\!\cdots\!71}{54\!\cdots\!00}a^{27}+\frac{19\!\cdots\!59}{18\!\cdots\!00}a^{26}-\frac{56\!\cdots\!97}{34\!\cdots\!10}a^{25}-\frac{23\!\cdots\!11}{23\!\cdots\!25}a^{24}+\frac{11\!\cdots\!59}{10\!\cdots\!20}a^{23}+\frac{11\!\cdots\!57}{18\!\cdots\!00}a^{22}-\frac{53\!\cdots\!61}{13\!\cdots\!00}a^{21}-\frac{57\!\cdots\!61}{23\!\cdots\!25}a^{20}+\frac{12\!\cdots\!97}{21\!\cdots\!40}a^{19}+\frac{27\!\cdots\!51}{75\!\cdots\!00}a^{18}+\frac{12\!\cdots\!17}{10\!\cdots\!00}a^{17}+\frac{97\!\cdots\!23}{15\!\cdots\!60}a^{16}+\frac{18\!\cdots\!77}{48\!\cdots\!00}a^{15}+\frac{23\!\cdots\!83}{10\!\cdots\!40}a^{14}-\frac{63\!\cdots\!79}{10\!\cdots\!20}a^{13}-\frac{33\!\cdots\!53}{94\!\cdots\!00}a^{12}+\frac{16\!\cdots\!17}{15\!\cdots\!00}a^{11}+\frac{10\!\cdots\!07}{15\!\cdots\!00}a^{10}+\frac{84\!\cdots\!03}{10\!\cdots\!00}a^{9}+\frac{29\!\cdots\!83}{75\!\cdots\!00}a^{8}+\frac{23\!\cdots\!17}{99\!\cdots\!00}a^{7}+\frac{71\!\cdots\!93}{68\!\cdots\!00}a^{6}+\frac{57\!\cdots\!51}{13\!\cdots\!00}a^{5}+\frac{58\!\cdots\!33}{37\!\cdots\!00}a^{4}+\frac{45\!\cdots\!41}{11\!\cdots\!25}a^{3}+\frac{29\!\cdots\!51}{24\!\cdots\!60}a^{2}+\frac{32\!\cdots\!17}{17\!\cdots\!50}a+\frac{66\!\cdots\!42}{23\!\cdots\!25}$, $\frac{15\!\cdots\!27}{10\!\cdots\!00}a^{31}-\frac{48\!\cdots\!71}{10\!\cdots\!00}a^{30}-\frac{38\!\cdots\!33}{78\!\cdots\!00}a^{29}+\frac{50\!\cdots\!07}{30\!\cdots\!00}a^{28}+\frac{43\!\cdots\!73}{54\!\cdots\!00}a^{27}-\frac{56\!\cdots\!33}{21\!\cdots\!00}a^{26}-\frac{10\!\cdots\!21}{13\!\cdots\!00}a^{25}+\frac{54\!\cdots\!97}{21\!\cdots\!00}a^{24}+\frac{51\!\cdots\!33}{10\!\cdots\!20}a^{23}-\frac{68\!\cdots\!03}{43\!\cdots\!60}a^{22}-\frac{15\!\cdots\!49}{85\!\cdots\!25}a^{21}+\frac{13\!\cdots\!03}{21\!\cdots\!00}a^{20}+\frac{28\!\cdots\!27}{10\!\cdots\!00}a^{19}-\frac{21\!\cdots\!91}{21\!\cdots\!00}a^{18}+\frac{56\!\cdots\!99}{10\!\cdots\!00}a^{17}-\frac{16\!\cdots\!33}{10\!\cdots\!00}a^{16}+\frac{66\!\cdots\!47}{39\!\cdots\!00}a^{15}-\frac{15\!\cdots\!17}{30\!\cdots\!00}a^{14}-\frac{14\!\cdots\!49}{54\!\cdots\!00}a^{13}+\frac{19\!\cdots\!81}{21\!\cdots\!00}a^{12}+\frac{76\!\cdots\!71}{15\!\cdots\!00}a^{11}-\frac{54\!\cdots\!41}{30\!\cdots\!00}a^{10}+\frac{37\!\cdots\!01}{10\!\cdots\!00}a^{9}-\frac{41\!\cdots\!73}{54\!\cdots\!00}a^{8}+\frac{10\!\cdots\!31}{99\!\cdots\!00}a^{7}-\frac{41\!\cdots\!51}{39\!\cdots\!60}a^{6}+\frac{47\!\cdots\!97}{27\!\cdots\!00}a^{5}-\frac{14\!\cdots\!03}{54\!\cdots\!00}a^{4}+\frac{10\!\cdots\!57}{88\!\cdots\!00}a^{3}+\frac{55\!\cdots\!63}{35\!\cdots\!80}a^{2}-\frac{12\!\cdots\!82}{85\!\cdots\!25}a+\frac{68\!\cdots\!18}{33\!\cdots\!75}$, $\frac{80\!\cdots\!63}{15\!\cdots\!60}a^{31}+\frac{19\!\cdots\!27}{25\!\cdots\!84}a^{30}-\frac{10\!\cdots\!13}{55\!\cdots\!20}a^{29}-\frac{12\!\cdots\!91}{45\!\cdots\!00}a^{28}+\frac{23\!\cdots\!17}{78\!\cdots\!80}a^{27}+\frac{14\!\cdots\!27}{31\!\cdots\!00}a^{26}-\frac{22\!\cdots\!65}{78\!\cdots\!48}a^{25}-\frac{34\!\cdots\!11}{79\!\cdots\!00}a^{24}+\frac{13\!\cdots\!31}{78\!\cdots\!80}a^{23}+\frac{17\!\cdots\!03}{63\!\cdots\!60}a^{22}-\frac{26\!\cdots\!31}{39\!\cdots\!40}a^{21}-\frac{41\!\cdots\!47}{39\!\cdots\!00}a^{20}+\frac{15\!\cdots\!27}{15\!\cdots\!60}a^{19}+\frac{10\!\cdots\!23}{63\!\cdots\!00}a^{18}+\frac{29\!\cdots\!29}{15\!\cdots\!60}a^{17}+\frac{17\!\cdots\!39}{63\!\cdots\!00}a^{16}+\frac{69\!\cdots\!93}{11\!\cdots\!40}a^{15}+\frac{10\!\cdots\!21}{11\!\cdots\!00}a^{14}-\frac{77\!\cdots\!87}{78\!\cdots\!80}a^{13}-\frac{48\!\cdots\!03}{31\!\cdots\!00}a^{12}+\frac{41\!\cdots\!91}{22\!\cdots\!80}a^{11}+\frac{53\!\cdots\!79}{18\!\cdots\!60}a^{10}+\frac{36\!\cdots\!71}{31\!\cdots\!92}a^{9}+\frac{96\!\cdots\!77}{63\!\cdots\!00}a^{8}+\frac{45\!\cdots\!49}{14\!\cdots\!60}a^{7}+\frac{24\!\cdots\!03}{58\!\cdots\!00}a^{6}+\frac{38\!\cdots\!93}{78\!\cdots\!80}a^{5}+\frac{53\!\cdots\!81}{79\!\cdots\!00}a^{4}+\frac{41\!\cdots\!49}{11\!\cdots\!80}a^{3}+\frac{35\!\cdots\!41}{51\!\cdots\!00}a^{2}+\frac{32\!\cdots\!68}{48\!\cdots\!03}a+\frac{37\!\cdots\!67}{99\!\cdots\!25}$, $\frac{31\!\cdots\!47}{78\!\cdots\!00}a^{31}+\frac{11\!\cdots\!11}{54\!\cdots\!00}a^{30}-\frac{11\!\cdots\!17}{78\!\cdots\!00}a^{29}-\frac{84\!\cdots\!33}{11\!\cdots\!40}a^{28}+\frac{18\!\cdots\!47}{78\!\cdots\!00}a^{27}+\frac{67\!\cdots\!33}{54\!\cdots\!60}a^{26}-\frac{35\!\cdots\!89}{15\!\cdots\!60}a^{25}-\frac{16\!\cdots\!73}{13\!\cdots\!00}a^{24}+\frac{21\!\cdots\!81}{15\!\cdots\!60}a^{23}+\frac{20\!\cdots\!57}{27\!\cdots\!00}a^{22}-\frac{42\!\cdots\!43}{78\!\cdots\!00}a^{21}-\frac{39\!\cdots\!73}{13\!\cdots\!00}a^{20}+\frac{79\!\cdots\!53}{97\!\cdots\!60}a^{19}+\frac{24\!\cdots\!51}{54\!\cdots\!00}a^{18}+\frac{11\!\cdots\!97}{78\!\cdots\!00}a^{17}+\frac{38\!\cdots\!71}{54\!\cdots\!00}a^{16}+\frac{37\!\cdots\!53}{78\!\cdots\!00}a^{15}+\frac{11\!\cdots\!27}{48\!\cdots\!00}a^{14}-\frac{24\!\cdots\!23}{31\!\cdots\!92}a^{13}-\frac{45\!\cdots\!85}{10\!\cdots\!72}a^{12}+\frac{58\!\cdots\!37}{39\!\cdots\!00}a^{11}+\frac{64\!\cdots\!63}{78\!\cdots\!00}a^{10}+\frac{69\!\cdots\!53}{78\!\cdots\!00}a^{9}+\frac{20\!\cdots\!57}{54\!\cdots\!00}a^{8}+\frac{79\!\cdots\!41}{35\!\cdots\!00}a^{7}+\frac{45\!\cdots\!27}{49\!\cdots\!00}a^{6}+\frac{13\!\cdots\!59}{39\!\cdots\!00}a^{5}+\frac{15\!\cdots\!39}{13\!\cdots\!00}a^{4}+\frac{44\!\cdots\!53}{22\!\cdots\!50}a^{3}+\frac{29\!\cdots\!27}{44\!\cdots\!00}a^{2}+\frac{14\!\cdots\!09}{24\!\cdots\!50}a+\frac{20\!\cdots\!92}{85\!\cdots\!25}$, $\frac{98\!\cdots\!89}{10\!\cdots\!00}a^{31}+\frac{11\!\cdots\!33}{27\!\cdots\!00}a^{30}-\frac{12\!\cdots\!53}{39\!\cdots\!00}a^{29}-\frac{16\!\cdots\!57}{11\!\cdots\!00}a^{28}+\frac{14\!\cdots\!51}{27\!\cdots\!00}a^{27}+\frac{12\!\cdots\!09}{54\!\cdots\!00}a^{26}-\frac{54\!\cdots\!27}{10\!\cdots\!20}a^{25}-\frac{12\!\cdots\!09}{54\!\cdots\!00}a^{24}+\frac{42\!\cdots\!93}{13\!\cdots\!40}a^{23}+\frac{77\!\cdots\!63}{54\!\cdots\!00}a^{22}-\frac{65\!\cdots\!13}{54\!\cdots\!00}a^{21}-\frac{30\!\cdots\!63}{54\!\cdots\!00}a^{20}+\frac{39\!\cdots\!31}{21\!\cdots\!40}a^{19}+\frac{47\!\cdots\!23}{54\!\cdots\!00}a^{18}+\frac{35\!\cdots\!09}{10\!\cdots\!00}a^{17}+\frac{37\!\cdots\!09}{27\!\cdots\!00}a^{16}+\frac{84\!\cdots\!39}{78\!\cdots\!00}a^{15}+\frac{37\!\cdots\!81}{78\!\cdots\!00}a^{14}-\frac{96\!\cdots\!99}{54\!\cdots\!60}a^{13}-\frac{43\!\cdots\!93}{54\!\cdots\!00}a^{12}+\frac{52\!\cdots\!79}{15\!\cdots\!00}a^{11}+\frac{12\!\cdots\!21}{78\!\cdots\!00}a^{10}+\frac{21\!\cdots\!31}{10\!\cdots\!00}a^{9}+\frac{10\!\cdots\!11}{13\!\cdots\!00}a^{8}+\frac{52\!\cdots\!99}{99\!\cdots\!00}a^{7}+\frac{91\!\cdots\!07}{49\!\cdots\!00}a^{6}+\frac{54\!\cdots\!41}{68\!\cdots\!00}a^{5}+\frac{82\!\cdots\!21}{34\!\cdots\!00}a^{4}+\frac{59\!\cdots\!12}{11\!\cdots\!25}a^{3}+\frac{70\!\cdots\!27}{44\!\cdots\!00}a^{2}+\frac{14\!\cdots\!22}{85\!\cdots\!25}a+\frac{46\!\cdots\!21}{85\!\cdots\!25}$, $\frac{26\!\cdots\!11}{54\!\cdots\!00}a^{31}+\frac{74\!\cdots\!57}{27\!\cdots\!00}a^{30}-\frac{13\!\cdots\!03}{78\!\cdots\!00}a^{29}-\frac{38\!\cdots\!29}{39\!\cdots\!00}a^{28}+\frac{14\!\cdots\!81}{54\!\cdots\!00}a^{27}+\frac{41\!\cdots\!83}{27\!\cdots\!00}a^{26}-\frac{28\!\cdots\!87}{10\!\cdots\!20}a^{25}-\frac{39\!\cdots\!87}{27\!\cdots\!00}a^{24}+\frac{17\!\cdots\!87}{10\!\cdots\!20}a^{23}+\frac{47\!\cdots\!89}{54\!\cdots\!60}a^{22}-\frac{32\!\cdots\!69}{54\!\cdots\!00}a^{21}-\frac{85\!\cdots\!81}{27\!\cdots\!00}a^{20}+\frac{40\!\cdots\!49}{54\!\cdots\!60}a^{19}+\frac{46\!\cdots\!91}{13\!\cdots\!00}a^{18}+\frac{11\!\cdots\!31}{54\!\cdots\!00}a^{17}+\frac{36\!\cdots\!63}{27\!\cdots\!00}a^{16}+\frac{48\!\cdots\!67}{78\!\cdots\!00}a^{15}+\frac{14\!\cdots\!81}{39\!\cdots\!00}a^{14}-\frac{10\!\cdots\!81}{10\!\cdots\!20}a^{13}-\frac{14\!\cdots\!99}{27\!\cdots\!00}a^{12}+\frac{18\!\cdots\!29}{12\!\cdots\!75}a^{11}+\frac{14\!\cdots\!11}{19\!\cdots\!00}a^{10}+\frac{90\!\cdots\!39}{54\!\cdots\!00}a^{9}+\frac{33\!\cdots\!81}{27\!\cdots\!00}a^{8}+\frac{13\!\cdots\!93}{24\!\cdots\!00}a^{7}+\frac{20\!\cdots\!01}{62\!\cdots\!00}a^{6}+\frac{57\!\cdots\!13}{68\!\cdots\!00}a^{5}+\frac{16\!\cdots\!63}{27\!\cdots\!80}a^{4}+\frac{36\!\cdots\!79}{44\!\cdots\!00}a^{3}+\frac{58\!\cdots\!76}{11\!\cdots\!25}a^{2}+\frac{10\!\cdots\!97}{17\!\cdots\!50}a+\frac{70\!\cdots\!22}{34\!\cdots\!21}$, $\frac{23\!\cdots\!31}{10\!\cdots\!20}a^{30}-\frac{15\!\cdots\!13}{19\!\cdots\!00}a^{28}+\frac{16\!\cdots\!91}{13\!\cdots\!00}a^{26}-\frac{31\!\cdots\!37}{27\!\cdots\!00}a^{24}+\frac{48\!\cdots\!17}{68\!\cdots\!00}a^{22}-\frac{73\!\cdots\!43}{27\!\cdots\!00}a^{20}+\frac{38\!\cdots\!13}{10\!\cdots\!20}a^{18}+\frac{49\!\cdots\!43}{54\!\cdots\!00}a^{16}+\frac{15\!\cdots\!99}{55\!\cdots\!00}a^{14}-\frac{56\!\cdots\!23}{13\!\cdots\!00}a^{12}+\frac{53\!\cdots\!73}{78\!\cdots\!00}a^{10}+\frac{38\!\cdots\!61}{54\!\cdots\!00}a^{8}+\frac{30\!\cdots\!89}{19\!\cdots\!04}a^{6}+\frac{34\!\cdots\!77}{17\!\cdots\!50}a^{4}+\frac{56\!\cdots\!89}{44\!\cdots\!00}a^{2}+\frac{38\!\cdots\!53}{85\!\cdots\!25}$, $\frac{19\!\cdots\!09}{39\!\cdots\!00}a^{31}+\frac{61\!\cdots\!79}{45\!\cdots\!00}a^{30}-\frac{17\!\cdots\!03}{97\!\cdots\!00}a^{29}-\frac{35\!\cdots\!49}{70\!\cdots\!00}a^{28}+\frac{34\!\cdots\!99}{12\!\cdots\!75}a^{27}+\frac{39\!\cdots\!19}{49\!\cdots\!00}a^{26}-\frac{26\!\cdots\!11}{97\!\cdots\!00}a^{25}-\frac{37\!\cdots\!33}{49\!\cdots\!00}a^{24}+\frac{12\!\cdots\!01}{69\!\cdots\!00}a^{23}+\frac{23\!\cdots\!73}{49\!\cdots\!00}a^{22}-\frac{13\!\cdots\!39}{19\!\cdots\!20}a^{21}-\frac{89\!\cdots\!11}{49\!\cdots\!00}a^{20}+\frac{41\!\cdots\!51}{39\!\cdots\!00}a^{19}+\frac{59\!\cdots\!01}{22\!\cdots\!00}a^{18}+\frac{63\!\cdots\!99}{39\!\cdots\!00}a^{17}+\frac{25\!\cdots\!13}{49\!\cdots\!00}a^{16}+\frac{11\!\cdots\!43}{19\!\cdots\!00}a^{15}+\frac{10\!\cdots\!31}{64\!\cdots\!00}a^{14}-\frac{18\!\cdots\!17}{19\!\cdots\!20}a^{13}-\frac{13\!\cdots\!11}{49\!\cdots\!00}a^{12}+\frac{75\!\cdots\!31}{39\!\cdots\!00}a^{11}+\frac{87\!\cdots\!61}{17\!\cdots\!00}a^{10}+\frac{32\!\cdots\!11}{39\!\cdots\!00}a^{9}+\frac{16\!\cdots\!37}{49\!\cdots\!00}a^{8}+\frac{76\!\cdots\!13}{35\!\cdots\!00}a^{7}+\frac{22\!\cdots\!97}{24\!\cdots\!00}a^{6}+\frac{53\!\cdots\!29}{19\!\cdots\!00}a^{5}+\frac{45\!\cdots\!97}{31\!\cdots\!00}a^{4}+\frac{79\!\cdots\!83}{44\!\cdots\!00}a^{3}+\frac{21\!\cdots\!71}{22\!\cdots\!50}a^{2}+\frac{39\!\cdots\!41}{69\!\cdots\!90}a+\frac{54\!\cdots\!86}{15\!\cdots\!55}$, $\frac{57\!\cdots\!63}{78\!\cdots\!00}a^{31}+\frac{20\!\cdots\!87}{10\!\cdots\!20}a^{30}-\frac{20\!\cdots\!21}{78\!\cdots\!00}a^{29}-\frac{66\!\cdots\!37}{97\!\cdots\!00}a^{28}+\frac{66\!\cdots\!41}{15\!\cdots\!60}a^{27}+\frac{75\!\cdots\!19}{68\!\cdots\!00}a^{26}-\frac{31\!\cdots\!31}{78\!\cdots\!00}a^{25}-\frac{28\!\cdots\!11}{27\!\cdots\!00}a^{24}+\frac{19\!\cdots\!87}{78\!\cdots\!00}a^{23}+\frac{89\!\cdots\!27}{13\!\cdots\!00}a^{22}-\frac{75\!\cdots\!13}{78\!\cdots\!00}a^{21}-\frac{68\!\cdots\!69}{27\!\cdots\!00}a^{20}+\frac{54\!\cdots\!81}{39\!\cdots\!00}a^{19}+\frac{40\!\cdots\!81}{10\!\cdots\!20}a^{18}+\frac{21\!\cdots\!91}{78\!\cdots\!00}a^{17}+\frac{37\!\cdots\!39}{54\!\cdots\!00}a^{16}+\frac{70\!\cdots\!89}{78\!\cdots\!00}a^{15}+\frac{89\!\cdots\!59}{39\!\cdots\!00}a^{14}-\frac{11\!\cdots\!77}{78\!\cdots\!00}a^{13}-\frac{25\!\cdots\!67}{68\!\cdots\!00}a^{12}+\frac{50\!\cdots\!69}{19\!\cdots\!00}a^{11}+\frac{54\!\cdots\!89}{78\!\cdots\!00}a^{10}+\frac{14\!\cdots\!07}{78\!\cdots\!00}a^{9}+\frac{23\!\cdots\!93}{54\!\cdots\!00}a^{8}+\frac{19\!\cdots\!01}{35\!\cdots\!00}a^{7}+\frac{12\!\cdots\!01}{99\!\cdots\!20}a^{6}+\frac{17\!\cdots\!63}{19\!\cdots\!20}a^{5}+\frac{13\!\cdots\!49}{68\!\cdots\!00}a^{4}+\frac{74\!\cdots\!11}{88\!\cdots\!00}a^{3}+\frac{42\!\cdots\!61}{22\!\cdots\!50}a^{2}+\frac{71\!\cdots\!11}{24\!\cdots\!50}a+\frac{53\!\cdots\!49}{85\!\cdots\!25}$, $\frac{12\!\cdots\!47}{10\!\cdots\!00}a^{31}+\frac{10\!\cdots\!73}{15\!\cdots\!96}a^{30}-\frac{31\!\cdots\!89}{78\!\cdots\!00}a^{29}-\frac{29\!\cdots\!34}{12\!\cdots\!75}a^{28}+\frac{34\!\cdots\!31}{54\!\cdots\!00}a^{27}+\frac{77\!\cdots\!19}{19\!\cdots\!20}a^{26}-\frac{16\!\cdots\!19}{27\!\cdots\!00}a^{25}-\frac{52\!\cdots\!83}{13\!\cdots\!00}a^{24}+\frac{20\!\cdots\!63}{54\!\cdots\!00}a^{23}+\frac{23\!\cdots\!71}{97\!\cdots\!00}a^{22}-\frac{15\!\cdots\!03}{10\!\cdots\!72}a^{21}-\frac{90\!\cdots\!93}{97\!\cdots\!00}a^{20}+\frac{23\!\cdots\!03}{10\!\cdots\!00}a^{19}+\frac{15\!\cdots\!49}{11\!\cdots\!40}a^{18}+\frac{45\!\cdots\!23}{10\!\cdots\!00}a^{17}+\frac{18\!\cdots\!51}{78\!\cdots\!80}a^{16}+\frac{52\!\cdots\!29}{39\!\cdots\!00}a^{15}+\frac{31\!\cdots\!49}{39\!\cdots\!40}a^{14}-\frac{11\!\cdots\!67}{54\!\cdots\!00}a^{13}-\frac{12\!\cdots\!69}{97\!\cdots\!60}a^{12}+\frac{61\!\cdots\!31}{15\!\cdots\!00}a^{11}+\frac{10\!\cdots\!03}{39\!\cdots\!00}a^{10}+\frac{29\!\cdots\!81}{10\!\cdots\!00}a^{9}+\frac{50\!\cdots\!79}{39\!\cdots\!00}a^{8}+\frac{76\!\cdots\!23}{99\!\cdots\!00}a^{7}+\frac{11\!\cdots\!61}{35\!\cdots\!00}a^{6}+\frac{88\!\cdots\!37}{68\!\cdots\!00}a^{5}+\frac{25\!\cdots\!97}{55\!\cdots\!20}a^{4}+\frac{47\!\cdots\!19}{44\!\cdots\!00}a^{3}+\frac{70\!\cdots\!57}{22\!\cdots\!50}a^{2}+\frac{83\!\cdots\!91}{17\!\cdots\!50}a+\frac{18\!\cdots\!62}{24\!\cdots\!15}$, $\frac{59\!\cdots\!71}{10\!\cdots\!00}a^{31}+\frac{29\!\cdots\!87}{97\!\cdots\!00}a^{30}-\frac{76\!\cdots\!59}{39\!\cdots\!00}a^{29}-\frac{86\!\cdots\!31}{78\!\cdots\!00}a^{28}+\frac{85\!\cdots\!91}{27\!\cdots\!00}a^{27}+\frac{13\!\cdots\!11}{78\!\cdots\!00}a^{26}-\frac{32\!\cdots\!61}{10\!\cdots\!20}a^{25}-\frac{13\!\cdots\!23}{78\!\cdots\!00}a^{24}+\frac{25\!\cdots\!73}{13\!\cdots\!00}a^{23}+\frac{82\!\cdots\!13}{78\!\cdots\!00}a^{22}-\frac{15\!\cdots\!11}{21\!\cdots\!44}a^{21}-\frac{31\!\cdots\!01}{78\!\cdots\!00}a^{20}+\frac{11\!\cdots\!41}{10\!\cdots\!00}a^{19}+\frac{47\!\cdots\!11}{78\!\cdots\!00}a^{18}+\frac{21\!\cdots\!79}{10\!\cdots\!00}a^{17}+\frac{15\!\cdots\!83}{13\!\cdots\!00}a^{16}+\frac{51\!\cdots\!69}{78\!\cdots\!00}a^{15}+\frac{28\!\cdots\!17}{78\!\cdots\!00}a^{14}-\frac{28\!\cdots\!43}{27\!\cdots\!00}a^{13}-\frac{46\!\cdots\!03}{78\!\cdots\!00}a^{12}+\frac{61\!\cdots\!37}{31\!\cdots\!20}a^{11}+\frac{17\!\cdots\!51}{15\!\cdots\!60}a^{10}+\frac{13\!\cdots\!37}{10\!\cdots\!00}a^{9}+\frac{26\!\cdots\!43}{39\!\cdots\!00}a^{8}+\frac{35\!\cdots\!13}{99\!\cdots\!00}a^{7}+\frac{13\!\cdots\!07}{70\!\cdots\!00}a^{6}+\frac{16\!\cdots\!17}{27\!\cdots\!80}a^{5}+\frac{13\!\cdots\!27}{48\!\cdots\!00}a^{4}+\frac{64\!\cdots\!39}{11\!\cdots\!25}a^{3}+\frac{91\!\cdots\!21}{44\!\cdots\!00}a^{2}+\frac{42\!\cdots\!11}{17\!\cdots\!05}a+\frac{69\!\cdots\!44}{12\!\cdots\!75}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 20661660535943.168 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 20661660535943.168 \cdot 336}{4\cdot\sqrt{802755791064235699686694954262517410037760000000000000000}}\cr\approx \mathstrut & 0.361435393172598 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 36*x^30 + 576*x^28 - 5474*x^26 + 34020*x^24 - 130166*x^22 + 187427*x^20 + 377425*x^18 + 1235554*x^16 - 19352440*x^14 + 35136537*x^12 + 25383639*x^10 + 8167525*x^8 + 1500436*x^6 + 160416*x^4 + 8704*x^2 + 256);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-35}) \), 4.4.725.1, 4.0.11600.1, 4.4.568400.1, 4.0.35525.3, \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{35})\), \(\Q(\sqrt{5}, \sqrt{-7})\), 8.8.70105760000.2, 8.0.273850625.1, 8.8.657515350625.1, 8.0.168323929760000.1, 8.0.384160000.1, 8.0.134560000.4, 8.0.323078560000.13, 8.8.323078560000.1, 8.0.323078560000.2, 8.0.1262025625.3, 8.0.323078560000.41, 16.0.104379755931673600000000.1, 16.0.4914817585177600000000.1, 16.0.28332945329849413657600000000.2, 16.16.28332945329849413657600000000.1, 16.0.28332945329849413657600000000.3, 16.0.432326436307516687890625.1, 16.0.28332945329849413657600000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{4}$ R R ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.2.0.1}{2} }^{16}$ ${\href{/padicField/17.8.0.1}{8} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ R ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.8.0.1}{8} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(29\) Copy content Toggle raw display 29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
\(521\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$