Normalized defining polynomial
\( x^{32} - 8 x^{31} + 60 x^{30} - 300 x^{29} + 1366 x^{28} - 5048 x^{27} + 16998 x^{26} - 49604 x^{25} + \cdots + 12544 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(798128814824900776131730828340838600657840041252356096\) \(\medspace = 2^{64}\cdot 7^{16}\cdot 41^{8}\cdot 113^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(48.35\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}7^{1/2}41^{1/2}113^{1/2}\approx 720.3443620935753$ | ||
Ramified primes: | \(2\), \(7\), \(41\), \(113\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{18}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{22}-\frac{1}{8}a^{21}-\frac{1}{8}a^{20}+\frac{1}{8}a^{19}-\frac{1}{4}a^{16}-\frac{1}{4}a^{15}-\frac{1}{8}a^{14}+\frac{1}{8}a^{13}+\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}+\frac{3}{8}a^{6}-\frac{3}{8}a^{5}-\frac{1}{8}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{23}-\frac{1}{8}a^{19}-\frac{1}{4}a^{17}+\frac{1}{8}a^{15}-\frac{1}{8}a^{11}-\frac{1}{2}a^{9}+\frac{1}{8}a^{7}+\frac{1}{4}a^{5}-\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{24}-\frac{1}{8}a^{21}-\frac{1}{16}a^{20}-\frac{1}{8}a^{19}+\frac{1}{8}a^{18}+\frac{1}{16}a^{16}-\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{1}{8}a^{13}-\frac{1}{16}a^{12}+\frac{1}{8}a^{11}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}+\frac{1}{16}a^{8}+\frac{1}{4}a^{7}+\frac{3}{8}a^{6}+\frac{3}{8}a^{5}-\frac{1}{16}a^{4}-\frac{1}{8}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{16}a^{25}+\frac{1}{16}a^{21}-\frac{1}{4}a^{18}+\frac{1}{16}a^{17}-\frac{1}{4}a^{14}-\frac{3}{16}a^{13}-\frac{1}{8}a^{11}+\frac{5}{16}a^{9}-\frac{1}{2}a^{8}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{3}{16}a^{5}-\frac{1}{8}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{32}a^{26}-\frac{1}{32}a^{25}-\frac{1}{16}a^{23}+\frac{1}{32}a^{22}-\frac{1}{32}a^{21}-\frac{1}{8}a^{20}-\frac{1}{16}a^{19}-\frac{7}{32}a^{18}-\frac{5}{32}a^{17}+\frac{1}{16}a^{15}+\frac{1}{32}a^{14}-\frac{5}{32}a^{13}+\frac{1}{16}a^{12}+\frac{1}{8}a^{11}+\frac{1}{32}a^{10}-\frac{5}{32}a^{9}+\frac{1}{16}a^{8}-\frac{1}{4}a^{7}+\frac{9}{32}a^{6}+\frac{7}{32}a^{5}+\frac{1}{16}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{160}a^{27}+\frac{1}{80}a^{26}+\frac{3}{160}a^{25}+\frac{1}{80}a^{24}-\frac{9}{160}a^{23}+\frac{1}{80}a^{22}-\frac{9}{160}a^{21}-\frac{1}{16}a^{20}+\frac{31}{160}a^{19}+\frac{3}{16}a^{18}-\frac{17}{160}a^{17}+\frac{3}{80}a^{16}-\frac{29}{160}a^{15}-\frac{13}{80}a^{14}-\frac{23}{160}a^{13}+\frac{3}{16}a^{12}+\frac{29}{160}a^{11}+\frac{11}{80}a^{10}-\frac{47}{160}a^{9}+\frac{17}{80}a^{8}+\frac{41}{160}a^{7}-\frac{31}{80}a^{6}+\frac{53}{160}a^{5}-\frac{11}{80}a^{4}+\frac{9}{20}a^{3}+\frac{3}{20}a^{2}+\frac{1}{5}$, $\frac{1}{5440}a^{28}+\frac{1}{2720}a^{27}-\frac{37}{5440}a^{26}+\frac{3}{1360}a^{25}-\frac{69}{5440}a^{24}-\frac{149}{2720}a^{23}-\frac{209}{5440}a^{22}-\frac{1}{136}a^{21}+\frac{131}{5440}a^{20}+\frac{29}{544}a^{19}-\frac{1}{320}a^{18}+\frac{57}{680}a^{17}+\frac{951}{5440}a^{16}-\frac{203}{2720}a^{15}-\frac{423}{5440}a^{14}+\frac{23}{136}a^{13}+\frac{49}{5440}a^{12}+\frac{611}{2720}a^{11}+\frac{913}{5440}a^{10}+\frac{181}{1360}a^{9}-\frac{1939}{5440}a^{8}-\frac{971}{2720}a^{7}+\frac{333}{5440}a^{6}+\frac{167}{1360}a^{5}+\frac{283}{1360}a^{4}-\frac{317}{680}a^{3}+\frac{1}{68}a^{2}-\frac{69}{170}a-\frac{6}{17}$, $\frac{1}{5440}a^{29}-\frac{7}{5440}a^{27}-\frac{1}{340}a^{26}-\frac{161}{5440}a^{25}-\frac{23}{1360}a^{24}-\frac{259}{5440}a^{23}+\frac{69}{1360}a^{22}-\frac{53}{1088}a^{21}+\frac{23}{340}a^{20}-\frac{1243}{5440}a^{19}+\frac{67}{272}a^{18}+\frac{1331}{5440}a^{17}+\frac{77}{680}a^{16}+\frac{1103}{5440}a^{15}-\frac{81}{680}a^{14}-\frac{703}{5440}a^{13}-\frac{229}{1360}a^{12}+\frac{27}{1088}a^{11}-\frac{131}{1360}a^{10}-\frac{79}{1088}a^{9}-\frac{42}{85}a^{8}-\frac{2549}{5440}a^{7}+\frac{111}{1360}a^{6}-\frac{39}{80}a^{5}-\frac{7}{85}a^{4}-\frac{6}{17}a^{3}-\frac{97}{340}a^{2}-\frac{7}{170}a-\frac{8}{85}$, $\frac{1}{380800}a^{30}-\frac{1}{380800}a^{29}-\frac{3}{380800}a^{28}-\frac{109}{76160}a^{27}+\frac{5419}{380800}a^{26}+\frac{921}{76160}a^{25}+\frac{3229}{380800}a^{24}-\frac{18881}{380800}a^{23}+\frac{211}{4480}a^{22}+\frac{46849}{380800}a^{21}-\frac{7207}{380800}a^{20}+\frac{53519}{380800}a^{19}+\frac{4003}{380800}a^{18}-\frac{13443}{380800}a^{17}-\frac{5093}{380800}a^{16}+\frac{8321}{380800}a^{15}+\frac{30077}{380800}a^{14}-\frac{10541}{380800}a^{13}+\frac{35927}{380800}a^{12}-\frac{11547}{380800}a^{11}+\frac{21733}{380800}a^{10}+\frac{173731}{380800}a^{9}+\frac{19447}{380800}a^{8}+\frac{70841}{380800}a^{7}+\frac{44711}{95200}a^{6}+\frac{13221}{95200}a^{5}+\frac{10293}{47600}a^{4}-\frac{267}{3400}a^{3}+\frac{2151}{11900}a^{2}+\frac{19}{170}a+\frac{9}{425}$, $\frac{1}{40\!\cdots\!00}a^{31}+\frac{20\!\cdots\!79}{23\!\cdots\!00}a^{30}+\frac{13\!\cdots\!53}{40\!\cdots\!00}a^{29}+\frac{35\!\cdots\!03}{40\!\cdots\!00}a^{28}-\frac{12\!\cdots\!81}{40\!\cdots\!00}a^{27}+\frac{24\!\cdots\!21}{40\!\cdots\!00}a^{26}+\frac{14\!\cdots\!69}{40\!\cdots\!00}a^{25}-\frac{16\!\cdots\!17}{80\!\cdots\!00}a^{24}-\frac{23\!\cdots\!49}{40\!\cdots\!00}a^{23}+\frac{15\!\cdots\!09}{40\!\cdots\!00}a^{22}+\frac{39\!\cdots\!69}{40\!\cdots\!00}a^{21}+\frac{27\!\cdots\!91}{40\!\cdots\!00}a^{20}+\frac{24\!\cdots\!59}{40\!\cdots\!00}a^{19}+\frac{21\!\cdots\!29}{40\!\cdots\!00}a^{18}-\frac{16\!\cdots\!29}{80\!\cdots\!00}a^{17}-\frac{27\!\cdots\!71}{40\!\cdots\!00}a^{16}-\frac{54\!\cdots\!59}{40\!\cdots\!00}a^{15}+\frac{18\!\cdots\!87}{40\!\cdots\!00}a^{14}-\frac{90\!\cdots\!37}{40\!\cdots\!00}a^{13}+\frac{19\!\cdots\!61}{40\!\cdots\!00}a^{12}+\frac{79\!\cdots\!01}{80\!\cdots\!00}a^{11}-\frac{32\!\cdots\!37}{40\!\cdots\!00}a^{10}+\frac{10\!\cdots\!91}{40\!\cdots\!00}a^{9}+\frac{14\!\cdots\!69}{40\!\cdots\!00}a^{8}-\frac{16\!\cdots\!99}{50\!\cdots\!00}a^{7}-\frac{86\!\cdots\!89}{20\!\cdots\!00}a^{6}+\frac{93\!\cdots\!91}{10\!\cdots\!00}a^{5}+\frac{20\!\cdots\!62}{44\!\cdots\!75}a^{4}+\frac{58\!\cdots\!63}{12\!\cdots\!00}a^{3}-\frac{42\!\cdots\!99}{89\!\cdots\!50}a^{2}-\frac{22\!\cdots\!41}{44\!\cdots\!75}a+\frac{23\!\cdots\!48}{64\!\cdots\!25}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Relative class number: $144$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{12173122488577502504261228658338489273951235117270923567598845408472438873}{31604173957105726105704289235665227278045913662032655817114217938335439778000} a^{31} + \frac{5930556519341155660352284169589781790782134719407275267482060599186474083}{1859069056300336829747311131509719251649759627178391518653777525784437634000} a^{30} - \frac{379416272991017154091634298106209916179813853660028075913864899583487770347}{15802086978552863052852144617832613639022956831016327908557108969167719889000} a^{29} + \frac{15463935064563183148475655591989136313164480729632016093381668042815143872699}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{28} - \frac{35437671431407497248952705272693975560996616647754847366664938717720322216599}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{27} + \frac{265784317788657429448986899314330756179808006413224368492576617744735168155043}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{26} - \frac{451301007403489433725961798158265324621533324443475281497001445371778306665749}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{25} + \frac{533943817871966620002904205968667844711710706675485293073910980410806656590629}{25283339165684580884563431388532181822436730929626124653691374350668351822400} a^{24} - \frac{3589450127786955002008490536725406517679410630983551896115862643138092764334871}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{23} + \frac{17281659989309988279848950286407231511408002651048502532822366679122108522441847}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{22} - \frac{18878668397396169624828899201205623805334700480657594210685258458753278929466799}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{21} + \frac{74796824276567585067633534698004817998918412081346064058178687690680471711444753}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{20} - \frac{66963377517444011017905344763644675127995269602387560051047401636450753049226689}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{19} + \frac{217328269339609306994546526063423979473518880741643521160893526067139727238486607}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{18} - \frac{31760678528812559516854970221690562365335352147922207069190701128002865871306711}{12641669582842290442281715694266090911218365464813062326845687175334175911200} a^{17} + \frac{417065000983475040546605230259586427871115435006123826130732961034451445394128757}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{16} - \frac{251667474536072265895457286990300184098155271732915626671766206047581353038813261}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{15} + \frac{516288776428395354679270396118252712328854092345555412346459892109625234133999621}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{14} - \frac{283033320961458806094548572695789497400628217345784167988555233192665907174748423}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{13} + \frac{586550006687911857623238916545828856117873264601011039140032451034119411858661063}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{12} - \frac{34861144569586492193254602221497175274230381011848362640012755754215927356604821}{12641669582842290442281715694266090911218365464813062326845687175334175911200} a^{11} + \frac{692544918167167390764670234478638238838439993011705749649554523720495794843325829}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{10} - \frac{284382304768405728908994329783754892201582545543665268255144889893855011979457561}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{9} - \frac{1109151759410439860015732892956992850915446475870766354590339426944900407958042573}{126416695828422904422817156942660909112183654648130623268456871753341759112000} a^{8} - \frac{218902214620992373433302845256625384611872935589997700215734111602229311207637593}{63208347914211452211408578471330454556091827324065311634228435876670879556000} a^{7} + \frac{280617168821127431977161718519798744034279798300793680360950569634318090655056017}{25283339165684580884563431388532181822436730929626124653691374350668351822400} a^{6} + \frac{95578465254180632194675088941980627709933418505158914650370560950322002798415767}{12641669582842290442281715694266090911218365464813062326845687175334175911200} a^{5} - \frac{3841680381250852485407947101910235645150901211103584847437222890596642622455889}{2257440996936123293264592088261801948431850975859475415508158424166817127000} a^{4} - \frac{13572283287432370375898613044900720876210023618035386558266870535809578192502171}{3950521744638215763213036154458153409755739207754081977139277242291929972250} a^{3} - \frac{1571332776210732170246241529961930206505927662221146368501061957068256113408093}{1128720498468061646632296044130900974215925487929737707754079212083408563500} a^{2} - \frac{69696343151964807912764191470411196870357267491448530134071263973843046768031}{282180124617015411658074011032725243553981371982434426938519803020852140875} a - \frac{667845149555345602931227559283338936791292242623675087939974240545140060132}{40311446373859344522582001576103606221997338854633489562645686145836020125} \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{98\!\cdots\!31}{39\!\cdots\!00}a^{31}-\frac{16\!\cdots\!29}{78\!\cdots\!00}a^{30}+\frac{12\!\cdots\!31}{78\!\cdots\!00}a^{29}-\frac{62\!\cdots\!29}{78\!\cdots\!00}a^{28}+\frac{28\!\cdots\!03}{78\!\cdots\!00}a^{27}-\frac{10\!\cdots\!03}{78\!\cdots\!00}a^{26}+\frac{36\!\cdots\!53}{78\!\cdots\!00}a^{25}-\frac{42\!\cdots\!77}{31\!\cdots\!80}a^{24}+\frac{28\!\cdots\!07}{78\!\cdots\!00}a^{23}-\frac{68\!\cdots\!67}{78\!\cdots\!00}a^{22}+\frac{15\!\cdots\!73}{78\!\cdots\!00}a^{21}-\frac{29\!\cdots\!93}{78\!\cdots\!00}a^{20}+\frac{53\!\cdots\!03}{78\!\cdots\!00}a^{19}-\frac{86\!\cdots\!87}{78\!\cdots\!00}a^{18}+\frac{25\!\cdots\!69}{15\!\cdots\!00}a^{17}-\frac{16\!\cdots\!67}{78\!\cdots\!00}a^{16}+\frac{19\!\cdots\!97}{78\!\cdots\!00}a^{15}-\frac{11\!\cdots\!13}{46\!\cdots\!00}a^{14}+\frac{22\!\cdots\!51}{78\!\cdots\!00}a^{13}-\frac{22\!\cdots\!83}{78\!\cdots\!00}a^{12}+\frac{10\!\cdots\!29}{62\!\cdots\!56}a^{11}-\frac{27\!\cdots\!29}{78\!\cdots\!00}a^{10}+\frac{22\!\cdots\!47}{78\!\cdots\!00}a^{9}+\frac{45\!\cdots\!13}{78\!\cdots\!00}a^{8}+\frac{19\!\cdots\!51}{78\!\cdots\!00}a^{7}-\frac{16\!\cdots\!11}{23\!\cdots\!00}a^{6}-\frac{40\!\cdots\!51}{78\!\cdots\!20}a^{5}+\frac{78\!\cdots\!39}{87\!\cdots\!75}a^{4}+\frac{11\!\cdots\!17}{49\!\cdots\!00}a^{3}+\frac{35\!\cdots\!39}{35\!\cdots\!00}a^{2}+\frac{17\!\cdots\!58}{87\!\cdots\!75}a+\frac{20\!\cdots\!86}{12\!\cdots\!25}$, $\frac{11\!\cdots\!43}{25\!\cdots\!00}a^{31}-\frac{23\!\cdots\!59}{62\!\cdots\!50}a^{30}+\frac{14\!\cdots\!03}{50\!\cdots\!00}a^{29}-\frac{72\!\cdots\!57}{50\!\cdots\!00}a^{28}+\frac{16\!\cdots\!67}{25\!\cdots\!00}a^{27}-\frac{24\!\cdots\!23}{10\!\cdots\!00}a^{26}+\frac{83\!\cdots\!93}{10\!\cdots\!00}a^{25}-\frac{24\!\cdots\!63}{10\!\cdots\!00}a^{24}+\frac{32\!\cdots\!31}{50\!\cdots\!00}a^{23}-\frac{15\!\cdots\!27}{10\!\cdots\!00}a^{22}+\frac{33\!\cdots\!33}{10\!\cdots\!00}a^{21}-\frac{33\!\cdots\!09}{50\!\cdots\!00}a^{20}+\frac{58\!\cdots\!19}{50\!\cdots\!00}a^{19}-\frac{11\!\cdots\!71}{59\!\cdots\!00}a^{18}+\frac{53\!\cdots\!41}{20\!\cdots\!00}a^{17}-\frac{17\!\cdots\!71}{50\!\cdots\!00}a^{16}+\frac{20\!\cdots\!31}{50\!\cdots\!00}a^{15}-\frac{40\!\cdots\!91}{10\!\cdots\!00}a^{14}+\frac{44\!\cdots\!01}{10\!\cdots\!00}a^{13}-\frac{11\!\cdots\!47}{25\!\cdots\!00}a^{12}+\frac{55\!\cdots\!31}{25\!\cdots\!00}a^{11}-\frac{59\!\cdots\!59}{10\!\cdots\!00}a^{10}+\frac{43\!\cdots\!37}{10\!\cdots\!00}a^{9}+\frac{29\!\cdots\!47}{25\!\cdots\!00}a^{8}+\frac{69\!\cdots\!17}{12\!\cdots\!00}a^{7}-\frac{26\!\cdots\!59}{20\!\cdots\!00}a^{6}-\frac{22\!\cdots\!41}{20\!\cdots\!00}a^{5}+\frac{91\!\cdots\!81}{71\!\cdots\!00}a^{4}+\frac{71\!\cdots\!59}{14\!\cdots\!00}a^{3}+\frac{39\!\cdots\!21}{17\!\cdots\!00}a^{2}+\frac{18\!\cdots\!42}{44\!\cdots\!75}a+\frac{17\!\cdots\!79}{64\!\cdots\!25}$, $\frac{11\!\cdots\!87}{31\!\cdots\!00}a^{31}-\frac{19\!\cdots\!43}{63\!\cdots\!00}a^{30}+\frac{14\!\cdots\!47}{63\!\cdots\!00}a^{29}-\frac{72\!\cdots\!53}{63\!\cdots\!00}a^{28}+\frac{33\!\cdots\!81}{63\!\cdots\!00}a^{27}-\frac{61\!\cdots\!73}{31\!\cdots\!00}a^{26}+\frac{20\!\cdots\!53}{31\!\cdots\!00}a^{25}-\frac{24\!\cdots\!53}{12\!\cdots\!00}a^{24}+\frac{32\!\cdots\!99}{63\!\cdots\!00}a^{23}-\frac{38\!\cdots\!17}{31\!\cdots\!00}a^{22}+\frac{84\!\cdots\!53}{31\!\cdots\!00}a^{21}-\frac{33\!\cdots\!41}{63\!\cdots\!00}a^{20}+\frac{34\!\cdots\!23}{37\!\cdots\!00}a^{19}-\frac{46\!\cdots\!77}{31\!\cdots\!00}a^{18}+\frac{13\!\cdots\!57}{63\!\cdots\!00}a^{17}-\frac{17\!\cdots\!79}{63\!\cdots\!00}a^{16}+\frac{20\!\cdots\!09}{63\!\cdots\!00}a^{15}-\frac{25\!\cdots\!89}{79\!\cdots\!00}a^{14}+\frac{56\!\cdots\!53}{15\!\cdots\!00}a^{13}-\frac{23\!\cdots\!61}{63\!\cdots\!00}a^{12}+\frac{22\!\cdots\!99}{12\!\cdots\!00}a^{11}-\frac{74\!\cdots\!47}{15\!\cdots\!00}a^{10}+\frac{26\!\cdots\!23}{79\!\cdots\!00}a^{9}+\frac{59\!\cdots\!31}{63\!\cdots\!00}a^{8}+\frac{29\!\cdots\!17}{63\!\cdots\!00}a^{7}-\frac{13\!\cdots\!69}{12\!\cdots\!00}a^{6}-\frac{11\!\cdots\!63}{12\!\cdots\!00}a^{5}+\frac{34\!\cdots\!07}{45\!\cdots\!00}a^{4}+\frac{30\!\cdots\!23}{79\!\cdots\!00}a^{3}+\frac{10\!\cdots\!71}{56\!\cdots\!50}a^{2}+\frac{10\!\cdots\!39}{28\!\cdots\!75}a+\frac{10\!\cdots\!08}{40\!\cdots\!25}$, $\frac{36\!\cdots\!21}{20\!\cdots\!00}a^{31}-\frac{59\!\cdots\!39}{40\!\cdots\!00}a^{30}+\frac{44\!\cdots\!21}{40\!\cdots\!00}a^{29}-\frac{22\!\cdots\!89}{40\!\cdots\!00}a^{28}+\frac{10\!\cdots\!73}{40\!\cdots\!00}a^{27}-\frac{38\!\cdots\!23}{40\!\cdots\!00}a^{26}+\frac{12\!\cdots\!23}{40\!\cdots\!00}a^{25}-\frac{15\!\cdots\!97}{16\!\cdots\!40}a^{24}+\frac{10\!\cdots\!37}{40\!\cdots\!00}a^{23}-\frac{24\!\cdots\!47}{40\!\cdots\!00}a^{22}+\frac{51\!\cdots\!43}{40\!\cdots\!00}a^{21}-\frac{10\!\cdots\!13}{40\!\cdots\!00}a^{20}+\frac{17\!\cdots\!73}{40\!\cdots\!00}a^{19}-\frac{28\!\cdots\!67}{40\!\cdots\!00}a^{18}+\frac{48\!\cdots\!87}{47\!\cdots\!00}a^{17}-\frac{52\!\cdots\!47}{40\!\cdots\!00}a^{16}+\frac{36\!\cdots\!31}{23\!\cdots\!00}a^{15}-\frac{60\!\cdots\!61}{40\!\cdots\!00}a^{14}+\frac{65\!\cdots\!41}{40\!\cdots\!00}a^{13}-\frac{67\!\cdots\!03}{40\!\cdots\!00}a^{12}+\frac{12\!\cdots\!31}{16\!\cdots\!40}a^{11}-\frac{87\!\cdots\!89}{40\!\cdots\!00}a^{10}+\frac{62\!\cdots\!77}{40\!\cdots\!00}a^{9}+\frac{18\!\cdots\!33}{40\!\cdots\!00}a^{8}+\frac{82\!\cdots\!41}{40\!\cdots\!00}a^{7}-\frac{20\!\cdots\!49}{40\!\cdots\!00}a^{6}-\frac{89\!\cdots\!13}{20\!\cdots\!80}a^{5}+\frac{42\!\cdots\!09}{71\!\cdots\!00}a^{4}+\frac{23\!\cdots\!61}{12\!\cdots\!00}a^{3}+\frac{74\!\cdots\!37}{89\!\cdots\!50}a^{2}+\frac{13\!\cdots\!81}{89\!\cdots\!50}a+\frac{68\!\cdots\!01}{64\!\cdots\!25}$, $\frac{59\!\cdots\!89}{31\!\cdots\!28}a^{31}-\frac{23\!\cdots\!87}{15\!\cdots\!00}a^{30}+\frac{17\!\cdots\!57}{15\!\cdots\!00}a^{29}-\frac{89\!\cdots\!99}{15\!\cdots\!00}a^{28}+\frac{81\!\cdots\!49}{31\!\cdots\!80}a^{27}-\frac{15\!\cdots\!73}{15\!\cdots\!00}a^{26}+\frac{10\!\cdots\!59}{31\!\cdots\!80}a^{25}-\frac{14\!\cdots\!43}{15\!\cdots\!00}a^{24}+\frac{39\!\cdots\!37}{15\!\cdots\!00}a^{23}-\frac{18\!\cdots\!21}{31\!\cdots\!80}a^{22}+\frac{20\!\cdots\!27}{15\!\cdots\!00}a^{21}-\frac{38\!\cdots\!91}{15\!\cdots\!00}a^{20}+\frac{67\!\cdots\!77}{15\!\cdots\!00}a^{19}-\frac{10\!\cdots\!41}{15\!\cdots\!00}a^{18}+\frac{15\!\cdots\!71}{15\!\cdots\!00}a^{17}-\frac{19\!\cdots\!09}{15\!\cdots\!00}a^{16}+\frac{22\!\cdots\!83}{15\!\cdots\!00}a^{15}-\frac{20\!\cdots\!19}{15\!\cdots\!00}a^{14}+\frac{22\!\cdots\!37}{15\!\cdots\!00}a^{13}-\frac{22\!\cdots\!09}{15\!\cdots\!00}a^{12}+\frac{75\!\cdots\!79}{15\!\cdots\!00}a^{11}-\frac{32\!\cdots\!51}{15\!\cdots\!00}a^{10}+\frac{20\!\cdots\!33}{15\!\cdots\!00}a^{9}+\frac{81\!\cdots\!51}{15\!\cdots\!00}a^{8}+\frac{39\!\cdots\!13}{15\!\cdots\!00}a^{7}-\frac{52\!\cdots\!13}{98\!\cdots\!00}a^{6}-\frac{20\!\cdots\!27}{39\!\cdots\!00}a^{5}+\frac{30\!\cdots\!13}{70\!\cdots\!00}a^{4}+\frac{20\!\cdots\!43}{98\!\cdots\!00}a^{3}+\frac{33\!\cdots\!07}{35\!\cdots\!50}a^{2}+\frac{12\!\cdots\!67}{70\!\cdots\!10}a+\frac{19\!\cdots\!53}{14\!\cdots\!25}$, $\frac{32\!\cdots\!17}{51\!\cdots\!00}a^{31}-\frac{10\!\cdots\!21}{20\!\cdots\!00}a^{30}+\frac{80\!\cdots\!99}{20\!\cdots\!00}a^{29}-\frac{81\!\cdots\!47}{40\!\cdots\!00}a^{28}+\frac{93\!\cdots\!21}{10\!\cdots\!00}a^{27}-\frac{13\!\cdots\!29}{40\!\cdots\!00}a^{26}+\frac{23\!\cdots\!17}{20\!\cdots\!00}a^{25}-\frac{27\!\cdots\!49}{81\!\cdots\!00}a^{24}+\frac{23\!\cdots\!61}{25\!\cdots\!00}a^{23}-\frac{90\!\cdots\!01}{40\!\cdots\!00}a^{22}+\frac{98\!\cdots\!87}{20\!\cdots\!00}a^{21}-\frac{38\!\cdots\!69}{40\!\cdots\!00}a^{20}+\frac{17\!\cdots\!41}{10\!\cdots\!00}a^{19}-\frac{11\!\cdots\!01}{40\!\cdots\!00}a^{18}+\frac{65\!\cdots\!47}{16\!\cdots\!48}a^{17}-\frac{21\!\cdots\!61}{40\!\cdots\!00}a^{16}+\frac{15\!\cdots\!21}{25\!\cdots\!00}a^{15}-\frac{26\!\cdots\!23}{40\!\cdots\!00}a^{14}+\frac{83\!\cdots\!37}{12\!\cdots\!00}a^{13}-\frac{29\!\cdots\!59}{40\!\cdots\!00}a^{12}+\frac{84\!\cdots\!33}{20\!\cdots\!00}a^{11}-\frac{35\!\cdots\!27}{40\!\cdots\!00}a^{10}+\frac{14\!\cdots\!43}{20\!\cdots\!00}a^{9}+\frac{60\!\cdots\!29}{40\!\cdots\!00}a^{8}+\frac{15\!\cdots\!53}{25\!\cdots\!00}a^{7}-\frac{14\!\cdots\!33}{81\!\cdots\!00}a^{6}-\frac{33\!\cdots\!07}{25\!\cdots\!50}a^{5}+\frac{13\!\cdots\!39}{51\!\cdots\!00}a^{4}+\frac{37\!\cdots\!74}{64\!\cdots\!25}a^{3}+\frac{31\!\cdots\!89}{12\!\cdots\!50}a^{2}+\frac{53\!\cdots\!97}{12\!\cdots\!50}a+\frac{15\!\cdots\!54}{64\!\cdots\!25}$, $\frac{33\!\cdots\!19}{10\!\cdots\!00}a^{31}-\frac{56\!\cdots\!91}{20\!\cdots\!00}a^{30}+\frac{42\!\cdots\!89}{20\!\cdots\!00}a^{29}-\frac{11\!\cdots\!93}{10\!\cdots\!00}a^{28}+\frac{10\!\cdots\!47}{20\!\cdots\!00}a^{27}-\frac{19\!\cdots\!01}{10\!\cdots\!00}a^{26}+\frac{13\!\cdots\!47}{20\!\cdots\!00}a^{25}-\frac{19\!\cdots\!29}{10\!\cdots\!00}a^{24}+\frac{62\!\cdots\!39}{11\!\cdots\!00}a^{23}-\frac{12\!\cdots\!29}{10\!\cdots\!00}a^{22}+\frac{56\!\cdots\!47}{20\!\cdots\!00}a^{21}-\frac{35\!\cdots\!81}{62\!\cdots\!50}a^{20}+\frac{20\!\cdots\!67}{20\!\cdots\!00}a^{19}-\frac{16\!\cdots\!99}{10\!\cdots\!00}a^{18}+\frac{99\!\cdots\!03}{40\!\cdots\!00}a^{17}-\frac{19\!\cdots\!97}{59\!\cdots\!00}a^{16}+\frac{80\!\cdots\!33}{20\!\cdots\!00}a^{15}-\frac{42\!\cdots\!97}{10\!\cdots\!00}a^{14}+\frac{92\!\cdots\!69}{20\!\cdots\!00}a^{13}-\frac{24\!\cdots\!33}{50\!\cdots\!00}a^{12}+\frac{12\!\cdots\!13}{40\!\cdots\!00}a^{11}-\frac{52\!\cdots\!53}{10\!\cdots\!00}a^{10}+\frac{97\!\cdots\!33}{20\!\cdots\!00}a^{9}+\frac{16\!\cdots\!09}{25\!\cdots\!00}a^{8}+\frac{31\!\cdots\!79}{20\!\cdots\!00}a^{7}-\frac{40\!\cdots\!43}{40\!\cdots\!00}a^{6}-\frac{23\!\cdots\!17}{50\!\cdots\!00}a^{5}+\frac{89\!\cdots\!21}{35\!\cdots\!00}a^{4}+\frac{16\!\cdots\!69}{62\!\cdots\!50}a^{3}+\frac{12\!\cdots\!77}{17\!\cdots\!00}a^{2}+\frac{20\!\cdots\!27}{26\!\cdots\!75}a+\frac{18\!\cdots\!73}{64\!\cdots\!25}$, $\frac{20\!\cdots\!23}{50\!\cdots\!00}a^{31}-\frac{68\!\cdots\!49}{20\!\cdots\!00}a^{30}+\frac{51\!\cdots\!81}{20\!\cdots\!00}a^{29}-\frac{15\!\cdots\!27}{11\!\cdots\!00}a^{28}+\frac{70\!\cdots\!19}{11\!\cdots\!00}a^{27}-\frac{44\!\cdots\!63}{20\!\cdots\!00}a^{26}+\frac{15\!\cdots\!23}{20\!\cdots\!00}a^{25}-\frac{88\!\cdots\!43}{40\!\cdots\!00}a^{24}+\frac{11\!\cdots\!47}{20\!\cdots\!00}a^{23}-\frac{28\!\cdots\!47}{20\!\cdots\!00}a^{22}+\frac{61\!\cdots\!03}{20\!\cdots\!00}a^{21}-\frac{12\!\cdots\!43}{20\!\cdots\!00}a^{20}+\frac{21\!\cdots\!83}{20\!\cdots\!00}a^{19}-\frac{34\!\cdots\!47}{20\!\cdots\!00}a^{18}+\frac{20\!\cdots\!31}{80\!\cdots\!20}a^{17}-\frac{64\!\cdots\!17}{20\!\cdots\!00}a^{16}+\frac{76\!\cdots\!17}{20\!\cdots\!00}a^{15}-\frac{76\!\cdots\!81}{20\!\cdots\!00}a^{14}+\frac{83\!\cdots\!01}{20\!\cdots\!00}a^{13}-\frac{85\!\cdots\!73}{20\!\cdots\!00}a^{12}+\frac{87\!\cdots\!29}{40\!\cdots\!00}a^{11}-\frac{10\!\cdots\!69}{20\!\cdots\!00}a^{10}+\frac{81\!\cdots\!17}{20\!\cdots\!00}a^{9}+\frac{20\!\cdots\!63}{20\!\cdots\!00}a^{8}+\frac{81\!\cdots\!81}{20\!\cdots\!00}a^{7}-\frac{75\!\cdots\!44}{62\!\cdots\!25}a^{6}-\frac{23\!\cdots\!43}{25\!\cdots\!00}a^{5}+\frac{11\!\cdots\!24}{64\!\cdots\!25}a^{4}+\frac{10\!\cdots\!49}{25\!\cdots\!00}a^{3}+\frac{29\!\cdots\!13}{17\!\cdots\!00}a^{2}+\frac{26\!\cdots\!37}{89\!\cdots\!50}a+\frac{13\!\cdots\!37}{64\!\cdots\!25}$, $\frac{36\!\cdots\!49}{40\!\cdots\!00}a^{31}-\frac{29\!\cdots\!97}{40\!\cdots\!00}a^{30}+\frac{22\!\cdots\!01}{40\!\cdots\!00}a^{29}-\frac{11\!\cdots\!81}{40\!\cdots\!00}a^{28}+\frac{29\!\cdots\!43}{23\!\cdots\!00}a^{27}-\frac{18\!\cdots\!17}{40\!\cdots\!00}a^{26}+\frac{63\!\cdots\!31}{40\!\cdots\!00}a^{25}-\frac{18\!\cdots\!21}{40\!\cdots\!00}a^{24}+\frac{49\!\cdots\!43}{40\!\cdots\!00}a^{23}-\frac{11\!\cdots\!89}{40\!\cdots\!00}a^{22}+\frac{50\!\cdots\!07}{80\!\cdots\!20}a^{21}-\frac{28\!\cdots\!09}{23\!\cdots\!00}a^{20}+\frac{17\!\cdots\!03}{80\!\cdots\!20}a^{19}-\frac{13\!\cdots\!61}{40\!\cdots\!00}a^{18}+\frac{19\!\cdots\!77}{40\!\cdots\!00}a^{17}-\frac{24\!\cdots\!47}{40\!\cdots\!00}a^{16}+\frac{34\!\cdots\!49}{47\!\cdots\!60}a^{15}-\frac{11\!\cdots\!07}{16\!\cdots\!04}a^{14}+\frac{30\!\cdots\!01}{40\!\cdots\!00}a^{13}-\frac{18\!\cdots\!87}{23\!\cdots\!00}a^{12}+\frac{12\!\cdots\!53}{40\!\cdots\!00}a^{11}-\frac{82\!\cdots\!63}{80\!\cdots\!20}a^{10}+\frac{67\!\cdots\!73}{94\!\cdots\!12}a^{9}+\frac{96\!\cdots\!53}{40\!\cdots\!00}a^{8}+\frac{10\!\cdots\!27}{10\!\cdots\!00}a^{7}-\frac{52\!\cdots\!33}{20\!\cdots\!00}a^{6}-\frac{47\!\cdots\!73}{20\!\cdots\!00}a^{5}+\frac{54\!\cdots\!27}{20\!\cdots\!00}a^{4}+\frac{12\!\cdots\!37}{12\!\cdots\!05}a^{3}+\frac{40\!\cdots\!63}{89\!\cdots\!75}a^{2}+\frac{77\!\cdots\!92}{89\!\cdots\!75}a+\frac{77\!\cdots\!08}{12\!\cdots\!25}$, $\frac{56\!\cdots\!27}{81\!\cdots\!00}a^{31}-\frac{16\!\cdots\!79}{28\!\cdots\!00}a^{30}+\frac{12\!\cdots\!01}{28\!\cdots\!00}a^{29}-\frac{62\!\cdots\!89}{28\!\cdots\!00}a^{28}+\frac{71\!\cdots\!27}{71\!\cdots\!00}a^{27}-\frac{10\!\cdots\!23}{28\!\cdots\!00}a^{26}+\frac{45\!\cdots\!51}{35\!\cdots\!00}a^{25}-\frac{21\!\cdots\!73}{57\!\cdots\!00}a^{24}+\frac{14\!\cdots\!81}{14\!\cdots\!00}a^{23}-\frac{69\!\cdots\!87}{28\!\cdots\!00}a^{22}+\frac{38\!\cdots\!47}{71\!\cdots\!00}a^{21}-\frac{30\!\cdots\!03}{28\!\cdots\!00}a^{20}+\frac{13\!\cdots\!67}{71\!\cdots\!00}a^{19}-\frac{88\!\cdots\!87}{28\!\cdots\!00}a^{18}+\frac{51\!\cdots\!83}{11\!\cdots\!60}a^{17}-\frac{17\!\cdots\!07}{28\!\cdots\!00}a^{16}+\frac{30\!\cdots\!49}{42\!\cdots\!00}a^{15}-\frac{21\!\cdots\!01}{28\!\cdots\!00}a^{14}+\frac{11\!\cdots\!23}{14\!\cdots\!00}a^{13}-\frac{24\!\cdots\!83}{28\!\cdots\!00}a^{12}+\frac{14\!\cdots\!77}{28\!\cdots\!00}a^{11}-\frac{28\!\cdots\!49}{28\!\cdots\!00}a^{10}+\frac{11\!\cdots\!91}{14\!\cdots\!00}a^{9}+\frac{43\!\cdots\!23}{28\!\cdots\!00}a^{8}+\frac{37\!\cdots\!27}{57\!\cdots\!00}a^{7}-\frac{56\!\cdots\!33}{28\!\cdots\!00}a^{6}-\frac{19\!\cdots\!67}{14\!\cdots\!00}a^{5}+\frac{97\!\cdots\!93}{35\!\cdots\!00}a^{4}+\frac{15\!\cdots\!11}{25\!\cdots\!00}a^{3}+\frac{46\!\cdots\!61}{17\!\cdots\!00}a^{2}+\frac{16\!\cdots\!28}{37\!\cdots\!25}a+\frac{13\!\cdots\!14}{64\!\cdots\!25}$, $\frac{14\!\cdots\!17}{40\!\cdots\!00}a^{31}-\frac{13\!\cdots\!69}{40\!\cdots\!00}a^{30}+\frac{99\!\cdots\!51}{40\!\cdots\!00}a^{29}-\frac{53\!\cdots\!49}{40\!\cdots\!00}a^{28}+\frac{24\!\cdots\!73}{40\!\cdots\!00}a^{27}-\frac{97\!\cdots\!43}{40\!\cdots\!00}a^{26}+\frac{33\!\cdots\!23}{40\!\cdots\!00}a^{25}-\frac{20\!\cdots\!09}{80\!\cdots\!00}a^{24}+\frac{28\!\cdots\!17}{40\!\cdots\!00}a^{23}-\frac{71\!\cdots\!47}{40\!\cdots\!00}a^{22}+\frac{16\!\cdots\!23}{40\!\cdots\!00}a^{21}-\frac{32\!\cdots\!53}{40\!\cdots\!00}a^{20}+\frac{61\!\cdots\!53}{40\!\cdots\!00}a^{19}-\frac{10\!\cdots\!07}{40\!\cdots\!00}a^{18}+\frac{31\!\cdots\!97}{80\!\cdots\!00}a^{17}-\frac{22\!\cdots\!07}{40\!\cdots\!00}a^{16}+\frac{27\!\cdots\!47}{40\!\cdots\!00}a^{15}-\frac{31\!\cdots\!21}{40\!\cdots\!00}a^{14}+\frac{33\!\cdots\!21}{40\!\cdots\!00}a^{13}-\frac{20\!\cdots\!39}{23\!\cdots\!00}a^{12}+\frac{59\!\cdots\!27}{80\!\cdots\!00}a^{11}-\frac{33\!\cdots\!29}{40\!\cdots\!00}a^{10}+\frac{37\!\cdots\!97}{40\!\cdots\!00}a^{9}+\frac{12\!\cdots\!73}{40\!\cdots\!00}a^{8}-\frac{55\!\cdots\!57}{20\!\cdots\!00}a^{7}-\frac{27\!\cdots\!71}{25\!\cdots\!00}a^{6}+\frac{25\!\cdots\!57}{10\!\cdots\!00}a^{5}+\frac{37\!\cdots\!89}{71\!\cdots\!00}a^{4}+\frac{11\!\cdots\!67}{25\!\cdots\!00}a^{3}-\frac{83\!\cdots\!33}{89\!\cdots\!50}a^{2}-\frac{25\!\cdots\!19}{89\!\cdots\!50}a-\frac{16\!\cdots\!34}{64\!\cdots\!25}$, $\frac{22\!\cdots\!47}{40\!\cdots\!00}a^{31}-\frac{46\!\cdots\!31}{10\!\cdots\!00}a^{30}+\frac{69\!\cdots\!43}{20\!\cdots\!00}a^{29}-\frac{35\!\cdots\!87}{20\!\cdots\!00}a^{28}+\frac{80\!\cdots\!67}{10\!\cdots\!00}a^{27}-\frac{60\!\cdots\!59}{20\!\cdots\!00}a^{26}+\frac{10\!\cdots\!17}{10\!\cdots\!00}a^{25}-\frac{24\!\cdots\!09}{80\!\cdots\!20}a^{24}+\frac{40\!\cdots\!99}{50\!\cdots\!00}a^{23}-\frac{38\!\cdots\!51}{20\!\cdots\!00}a^{22}+\frac{41\!\cdots\!47}{10\!\cdots\!00}a^{21}-\frac{16\!\cdots\!79}{20\!\cdots\!00}a^{20}+\frac{14\!\cdots\!67}{10\!\cdots\!00}a^{19}-\frac{46\!\cdots\!11}{20\!\cdots\!00}a^{18}+\frac{13\!\cdots\!87}{40\!\cdots\!00}a^{17}-\frac{87\!\cdots\!01}{20\!\cdots\!00}a^{16}+\frac{52\!\cdots\!33}{10\!\cdots\!00}a^{15}-\frac{10\!\cdots\!13}{20\!\cdots\!00}a^{14}+\frac{41\!\cdots\!49}{73\!\cdots\!00}a^{13}-\frac{11\!\cdots\!99}{20\!\cdots\!00}a^{12}+\frac{59\!\cdots\!15}{20\!\cdots\!88}a^{11}-\frac{14\!\cdots\!37}{20\!\cdots\!00}a^{10}+\frac{13\!\cdots\!77}{25\!\cdots\!00}a^{9}+\frac{27\!\cdots\!39}{20\!\cdots\!00}a^{8}+\frac{22\!\cdots\!81}{40\!\cdots\!00}a^{7}-\frac{64\!\cdots\!99}{40\!\cdots\!00}a^{6}-\frac{49\!\cdots\!71}{40\!\cdots\!60}a^{5}+\frac{85\!\cdots\!97}{35\!\cdots\!00}a^{4}+\frac{13\!\cdots\!77}{25\!\cdots\!00}a^{3}+\frac{39\!\cdots\!59}{17\!\cdots\!00}a^{2}+\frac{17\!\cdots\!23}{44\!\cdots\!75}a+\frac{17\!\cdots\!16}{64\!\cdots\!25}$, $\frac{12\!\cdots\!73}{40\!\cdots\!00}a^{31}-\frac{29\!\cdots\!23}{11\!\cdots\!00}a^{30}+\frac{22\!\cdots\!07}{11\!\cdots\!00}a^{29}-\frac{11\!\cdots\!63}{11\!\cdots\!00}a^{28}+\frac{30\!\cdots\!63}{67\!\cdots\!00}a^{27}-\frac{19\!\cdots\!21}{11\!\cdots\!00}a^{26}+\frac{65\!\cdots\!01}{11\!\cdots\!00}a^{25}-\frac{23\!\cdots\!39}{13\!\cdots\!60}a^{24}+\frac{52\!\cdots\!99}{11\!\cdots\!00}a^{23}-\frac{12\!\cdots\!89}{11\!\cdots\!00}a^{22}+\frac{16\!\cdots\!33}{67\!\cdots\!00}a^{21}-\frac{55\!\cdots\!51}{11\!\cdots\!00}a^{20}+\frac{99\!\cdots\!91}{11\!\cdots\!00}a^{19}-\frac{16\!\cdots\!89}{11\!\cdots\!00}a^{18}+\frac{47\!\cdots\!73}{22\!\cdots\!20}a^{17}-\frac{31\!\cdots\!49}{11\!\cdots\!00}a^{16}+\frac{38\!\cdots\!69}{11\!\cdots\!00}a^{15}-\frac{39\!\cdots\!47}{11\!\cdots\!00}a^{14}+\frac{43\!\cdots\!27}{11\!\cdots\!00}a^{13}-\frac{45\!\cdots\!41}{11\!\cdots\!00}a^{12}+\frac{57\!\cdots\!37}{22\!\cdots\!20}a^{11}-\frac{53\!\cdots\!63}{11\!\cdots\!00}a^{10}+\frac{44\!\cdots\!59}{11\!\cdots\!00}a^{9}+\frac{77\!\cdots\!51}{11\!\cdots\!00}a^{8}+\frac{33\!\cdots\!37}{11\!\cdots\!00}a^{7}-\frac{12\!\cdots\!51}{14\!\cdots\!20}a^{6}-\frac{84\!\cdots\!27}{14\!\cdots\!20}a^{5}+\frac{43\!\cdots\!39}{35\!\cdots\!00}a^{4}+\frac{70\!\cdots\!13}{25\!\cdots\!50}a^{3}+\frac{10\!\cdots\!34}{89\!\cdots\!75}a^{2}+\frac{25\!\cdots\!76}{12\!\cdots\!25}a+\frac{87\!\cdots\!99}{12\!\cdots\!25}$, $\frac{10\!\cdots\!97}{59\!\cdots\!00}a^{31}-\frac{77\!\cdots\!19}{50\!\cdots\!00}a^{30}+\frac{58\!\cdots\!21}{50\!\cdots\!00}a^{29}-\frac{71\!\cdots\!83}{11\!\cdots\!00}a^{28}+\frac{14\!\cdots\!53}{50\!\cdots\!00}a^{27}-\frac{21\!\cdots\!27}{20\!\cdots\!00}a^{26}+\frac{18\!\cdots\!03}{50\!\cdots\!00}a^{25}-\frac{44\!\cdots\!73}{40\!\cdots\!00}a^{24}+\frac{37\!\cdots\!43}{12\!\cdots\!00}a^{23}-\frac{14\!\cdots\!43}{20\!\cdots\!00}a^{22}+\frac{40\!\cdots\!19}{25\!\cdots\!00}a^{21}-\frac{65\!\cdots\!77}{20\!\cdots\!00}a^{20}+\frac{29\!\cdots\!43}{50\!\cdots\!00}a^{19}-\frac{19\!\cdots\!03}{20\!\cdots\!00}a^{18}+\frac{14\!\cdots\!73}{10\!\cdots\!00}a^{17}-\frac{39\!\cdots\!13}{20\!\cdots\!00}a^{16}+\frac{12\!\cdots\!07}{50\!\cdots\!00}a^{15}-\frac{51\!\cdots\!29}{20\!\cdots\!00}a^{14}+\frac{13\!\cdots\!91}{50\!\cdots\!00}a^{13}-\frac{58\!\cdots\!27}{20\!\cdots\!00}a^{12}+\frac{10\!\cdots\!63}{50\!\cdots\!00}a^{11}-\frac{59\!\cdots\!21}{20\!\cdots\!00}a^{10}+\frac{94\!\cdots\!77}{31\!\cdots\!25}a^{9}+\frac{65\!\cdots\!57}{20\!\cdots\!00}a^{8}-\frac{13\!\cdots\!03}{10\!\cdots\!00}a^{7}-\frac{45\!\cdots\!13}{80\!\cdots\!20}a^{6}-\frac{66\!\cdots\!81}{50\!\cdots\!00}a^{5}+\frac{39\!\cdots\!03}{17\!\cdots\!00}a^{4}+\frac{71\!\cdots\!79}{62\!\cdots\!50}a^{3}-\frac{49\!\cdots\!23}{17\!\cdots\!00}a^{2}-\frac{49\!\cdots\!61}{44\!\cdots\!75}a-\frac{12\!\cdots\!27}{64\!\cdots\!25}$, $\frac{41\!\cdots\!29}{50\!\cdots\!00}a^{31}-\frac{50\!\cdots\!31}{73\!\cdots\!00}a^{30}+\frac{26\!\cdots\!17}{50\!\cdots\!00}a^{29}-\frac{53\!\cdots\!17}{20\!\cdots\!00}a^{28}+\frac{12\!\cdots\!27}{10\!\cdots\!00}a^{27}-\frac{92\!\cdots\!69}{20\!\cdots\!00}a^{26}+\frac{15\!\cdots\!27}{10\!\cdots\!00}a^{25}-\frac{18\!\cdots\!03}{40\!\cdots\!00}a^{24}+\frac{12\!\cdots\!43}{10\!\cdots\!00}a^{23}-\frac{60\!\cdots\!81}{20\!\cdots\!00}a^{22}+\frac{66\!\cdots\!37}{10\!\cdots\!00}a^{21}-\frac{26\!\cdots\!79}{20\!\cdots\!00}a^{20}+\frac{23\!\cdots\!57}{10\!\cdots\!00}a^{19}-\frac{77\!\cdots\!21}{20\!\cdots\!00}a^{18}+\frac{11\!\cdots\!89}{20\!\cdots\!00}a^{17}-\frac{14\!\cdots\!51}{20\!\cdots\!00}a^{16}+\frac{90\!\cdots\!93}{10\!\cdots\!00}a^{15}-\frac{18\!\cdots\!23}{20\!\cdots\!00}a^{14}+\frac{10\!\cdots\!89}{10\!\cdots\!00}a^{13}-\frac{21\!\cdots\!89}{20\!\cdots\!00}a^{12}+\frac{76\!\cdots\!61}{11\!\cdots\!00}a^{11}-\frac{23\!\cdots\!27}{20\!\cdots\!00}a^{10}+\frac{60\!\cdots\!79}{59\!\cdots\!00}a^{9}+\frac{36\!\cdots\!39}{20\!\cdots\!00}a^{8}+\frac{49\!\cdots\!29}{10\!\cdots\!00}a^{7}-\frac{96\!\cdots\!67}{40\!\cdots\!00}a^{6}-\frac{27\!\cdots\!79}{20\!\cdots\!00}a^{5}+\frac{98\!\cdots\!71}{17\!\cdots\!00}a^{4}+\frac{20\!\cdots\!74}{31\!\cdots\!25}a^{3}+\frac{38\!\cdots\!19}{17\!\cdots\!00}a^{2}+\frac{28\!\cdots\!01}{89\!\cdots\!50}a+\frac{12\!\cdots\!81}{64\!\cdots\!25}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5703953342528.085 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 5703953342528.085 \cdot 144}{8\cdot\sqrt{798128814824900776131730828340838600657840041252356096}}\cr\approx \mathstrut & 0.678093947551382 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{8}$ | ${\href{/padicField/17.2.0.1}{2} }^{16}$ | ${\href{/padicField/19.8.0.1}{8} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.8.0.1}{8} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
\(7\) | 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.8.4.1 | $x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
7.8.4.1 | $x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(41\) | 41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.2.0.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
41.4.2.1 | $x^{4} + 1962 x^{3} + 998289 x^{2} + 35245368 x + 7080121$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 1962 x^{3} + 998289 x^{2} + 35245368 x + 7080121$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 1962 x^{3} + 998289 x^{2} + 35245368 x + 7080121$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
41.4.2.1 | $x^{4} + 1962 x^{3} + 998289 x^{2} + 35245368 x + 7080121$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(113\) | $\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
113.2.1.1 | $x^{2} + 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} + 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.1.1 | $x^{2} + 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.1.1 | $x^{2} + 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
113.2.0.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |