Normalized defining polynomial
\( x^{32} - 4 x^{30} + 2 x^{28} + 40 x^{26} - 160 x^{24} + 544 x^{22} - 264 x^{20} - 5440 x^{18} + 21744 x^{16} - 10880 x^{14} - 1056 x^{12} + 4352 x^{10} - 2560 x^{8} + 1280 x^{6} + 128 x^{4} - 512 x^{2} + 256 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{1312} a^{20} - \frac{3}{41} a^{10} + \frac{1}{41}$, $\frac{1}{1312} a^{21} - \frac{3}{41} a^{11} + \frac{1}{41} a$, $\frac{1}{1312} a^{22} + \frac{17}{328} a^{12} + \frac{1}{41} a^{2}$, $\frac{1}{1312} a^{23} + \frac{17}{328} a^{13} + \frac{1}{41} a^{3}$, $\frac{1}{18368} a^{24} + \frac{1}{56} a^{18} + \frac{5}{164} a^{14} - \frac{1}{56} a^{12} + \frac{1}{7} a^{6} + \frac{3}{41} a^{4} - \frac{1}{7}$, $\frac{1}{18368} a^{25} + \frac{1}{56} a^{19} + \frac{5}{164} a^{15} - \frac{1}{56} a^{13} + \frac{1}{7} a^{7} + \frac{3}{41} a^{5} - \frac{1}{7} a$, $\frac{1}{17651648} a^{26} - \frac{25}{4412912} a^{24} + \frac{165}{1260832} a^{22} + \frac{2803}{8825824} a^{20} - \frac{165}{107632} a^{18} + \frac{825}{157604} a^{16} - \frac{2803}{1103228} a^{14} - \frac{165}{551614} a^{12} - \frac{11371}{157604} a^{10} - \frac{2803}{26908} a^{8} + \frac{165}{551614} a^{6} + \frac{2803}{78802} a^{4} - \frac{34}{275807} a^{2} - \frac{16221}{275807}$, $\frac{1}{17651648} a^{27} - \frac{25}{4412912} a^{25} + \frac{165}{1260832} a^{23} + \frac{2803}{8825824} a^{21} - \frac{165}{107632} a^{19} + \frac{825}{157604} a^{17} - \frac{2803}{1103228} a^{15} - \frac{165}{551614} a^{13} - \frac{11371}{157604} a^{11} - \frac{2803}{26908} a^{9} + \frac{165}{551614} a^{7} + \frac{2803}{78802} a^{5} - \frac{34}{275807} a^{3} - \frac{16221}{275807} a$, $\frac{1}{35303296} a^{28} - \frac{1}{17651648} a^{24} + \frac{493}{2206456} a^{22} - \frac{165}{1260832} a^{20} - \frac{2873}{1103228} a^{18} + \frac{563}{53816} a^{16} - \frac{825}{157604} a^{14} - \frac{1121}{2206456} a^{12} - \frac{19618}{275807} a^{10} + \frac{3283}{78802} a^{8} - \frac{981}{6727} a^{6} + \frac{19618}{275807} a^{4} - \frac{9570}{39401} a^{2} + \frac{34}{275807}$, $\frac{1}{35303296} a^{29} - \frac{1}{17651648} a^{25} + \frac{493}{2206456} a^{23} - \frac{165}{1260832} a^{21} - \frac{2873}{1103228} a^{19} + \frac{563}{53816} a^{17} - \frac{825}{157604} a^{15} - \frac{1121}{2206456} a^{13} - \frac{19618}{275807} a^{11} + \frac{3283}{78802} a^{9} - \frac{981}{6727} a^{7} + \frac{19618}{275807} a^{5} - \frac{9570}{39401} a^{3} + \frac{34}{275807} a$, $\frac{1}{35303296} a^{30} - \frac{114243}{275807}$, $\frac{1}{35303296} a^{31} - \frac{114243}{275807} a$
Class group and class number
$C_{5}\times C_{20}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1479}{551614} a^{30} + \frac{1479}{157604} a^{28} + \frac{51}{2206456} a^{26} - \frac{1479}{13454} a^{24} + \frac{14790}{39401} a^{22} - \frac{343128}{275807} a^{20} - \frac{5916}{275807} a^{18} + \frac{9424999}{630416} a^{16} - \frac{343128}{6727} a^{14} + \frac{5916}{275807} a^{12} + \frac{686256}{39401} a^{10} - \frac{2827848}{275807} a^{8} + \frac{1656276}{275807} a^{6} - \frac{567936}{275807} a^{2} + \frac{47328}{39401} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 549552630502.74054 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||