Properties

Label 32.0.788...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $7.881\times 10^{56}$
Root discriminant \(59.98\)
Ramified primes $2,5,101,401$
Class number $576$ (GRH)
Class group [3, 192] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536)
 
gp: K = bnfinit(y^32 - 12*y^28 + 86*y^24 - 427*y^20 + 1809*y^16 - 6832*y^12 + 22016*y^8 - 49152*y^4 + 65536, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536)
 

\( x^{32} - 12x^{28} + 86x^{24} - 427x^{20} + 1809x^{16} - 6832x^{12} + 22016x^{8} - 49152x^{4} + 65536 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(788112603159847969611382715115371034050560000000000000000\) \(\medspace = 2^{64}\cdot 5^{16}\cdot 101^{8}\cdot 401^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.98\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{1/2}101^{1/2}401^{1/2}\approx 1800.0222220850496$
Ramified primes:   \(2\), \(5\), \(101\), \(401\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{18}-\frac{1}{2}a^{10}+\frac{1}{4}a^{6}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{19}-\frac{1}{2}a^{15}-\frac{1}{4}a^{11}-\frac{3}{8}a^{7}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{20}+\frac{1}{4}a^{16}+\frac{3}{8}a^{12}+\frac{5}{16}a^{8}+\frac{1}{16}a^{4}$, $\frac{1}{32}a^{21}+\frac{1}{8}a^{17}-\frac{5}{16}a^{13}-\frac{11}{32}a^{9}+\frac{1}{32}a^{5}$, $\frac{1}{64}a^{22}+\frac{1}{16}a^{18}+\frac{11}{32}a^{14}-\frac{11}{64}a^{10}-\frac{31}{64}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{128}a^{23}+\frac{1}{32}a^{19}+\frac{11}{64}a^{15}+\frac{53}{128}a^{11}-\frac{31}{128}a^{7}-\frac{1}{4}a^{3}$, $\frac{1}{29440}a^{24}-\frac{3}{1472}a^{20}-\frac{625}{2944}a^{16}-\frac{1227}{29440}a^{12}-\frac{2451}{5888}a^{8}-\frac{27}{184}a^{4}+\frac{16}{115}$, $\frac{1}{58880}a^{25}-\frac{3}{2944}a^{21}-\frac{625}{5888}a^{17}+\frac{28213}{58880}a^{13}+\frac{3437}{11776}a^{9}-\frac{27}{368}a^{5}+\frac{8}{115}a$, $\frac{1}{117760}a^{26}-\frac{3}{5888}a^{22}-\frac{625}{11776}a^{18}+\frac{28213}{117760}a^{14}-\frac{8339}{23552}a^{10}-\frac{27}{736}a^{6}+\frac{4}{115}a^{2}$, $\frac{1}{235520}a^{27}-\frac{3}{11776}a^{23}-\frac{625}{23552}a^{19}-\frac{89547}{235520}a^{15}-\frac{8339}{47104}a^{11}+\frac{709}{1472}a^{7}-\frac{111}{230}a^{3}$, $\frac{1}{25907200}a^{28}-\frac{79}{6476800}a^{24}-\frac{57969}{2590720}a^{20}+\frac{9518133}{25907200}a^{16}+\frac{9222177}{25907200}a^{12}-\frac{33411}{161920}a^{8}+\frac{2686}{6325}a^{4}-\frac{2556}{6325}$, $\frac{1}{51814400}a^{29}-\frac{79}{12953600}a^{25}-\frac{57969}{5181440}a^{21}+\frac{9518133}{51814400}a^{17}-\frac{16685023}{51814400}a^{13}-\frac{33411}{323840}a^{9}+\frac{1343}{6325}a^{5}-\frac{1278}{6325}a$, $\frac{1}{103628800}a^{30}-\frac{79}{25907200}a^{26}-\frac{57969}{10362880}a^{22}+\frac{9518133}{103628800}a^{18}-\frac{16685023}{103628800}a^{14}-\frac{33411}{647680}a^{10}-\frac{2491}{6325}a^{6}-\frac{639}{6325}a^{2}$, $\frac{1}{207257600}a^{31}-\frac{79}{51814400}a^{27}-\frac{57969}{20725760}a^{23}+\frac{9518133}{207257600}a^{19}+\frac{86943777}{207257600}a^{15}+\frac{614269}{1295360}a^{11}-\frac{2491}{12650}a^{7}-\frac{639}{12650}a^{3}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{192}$, which has order $576$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $576$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{643}{51814400} a^{29} - \frac{13177}{12953600} a^{25} + \frac{36173}{5181440} a^{21} - \frac{1780481}{51814400} a^{17} + \frac{6776051}{51814400} a^{13} - \frac{359641}{647680} a^{9} + \frac{188059}{101200} a^{5} - \frac{44603}{12650} a \)  (order $8$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{7599}{51814400}a^{29}-\frac{34261}{12953600}a^{25}+\frac{93729}{5181440}a^{21}-\frac{4301733}{51814400}a^{17}+\frac{16863743}{51814400}a^{13}-\frac{809243}{647680}a^{9}+\frac{786799}{202400}a^{5}-\frac{87629}{12650}a$, $\frac{383}{2072576}a^{30}-\frac{643}{51814400}a^{29}-\frac{755}{518144}a^{26}+\frac{13177}{12953600}a^{25}+\frac{7525}{1036288}a^{22}-\frac{36173}{5181440}a^{21}-\frac{58725}{2072576}a^{18}+\frac{1780481}{51814400}a^{17}+\frac{11105}{90112}a^{14}-\frac{6776051}{51814400}a^{13}-\frac{104725}{259072}a^{10}+\frac{359641}{647680}a^{9}+\frac{14645}{16192}a^{6}-\frac{188059}{101200}a^{5}-\frac{215}{1012}a^{2}+\frac{44603}{12650}a-1$, $\frac{7669}{103628800}a^{31}+\frac{383}{2072576}a^{30}-\frac{29121}{25907200}a^{27}-\frac{755}{518144}a^{26}+\frac{70699}{10362880}a^{23}+\frac{7525}{1036288}a^{22}-\frac{3105623}{103628800}a^{19}-\frac{58725}{2072576}a^{18}+\frac{12562973}{103628800}a^{15}+\frac{11105}{90112}a^{14}-\frac{52117}{112640}a^{11}-\frac{104725}{259072}a^{10}+\frac{1020213}{809600}a^{7}+\frac{14645}{16192}a^{6}-\frac{26547}{12650}a^{3}-\frac{215}{1012}a^{2}+1$, $\frac{4073}{20725760}a^{30}-\frac{7959}{5181440}a^{26}+\frac{18087}{2072576}a^{22}-\frac{678211}{20725760}a^{18}+\frac{129439}{901120}a^{14}-\frac{56937}{129536}a^{10}+\frac{25247}{20240}a^{6}-\frac{3081}{5060}a^{2}$, $\frac{12663}{51814400}a^{31}-\frac{931}{404800}a^{27}+\frac{65793}{5181440}a^{23}-\frac{2804421}{51814400}a^{19}+\frac{11064971}{51814400}a^{15}-\frac{2073619}{2590720}a^{11}+\frac{1519477}{809600}a^{7}-\frac{131427}{50600}a^{3}$, $\frac{1531}{5181440}a^{30}+\frac{19793}{51814400}a^{29}-\frac{91}{471040}a^{28}-\frac{1619}{647680}a^{26}-\frac{50927}{12953600}a^{25}+\frac{197}{117760}a^{24}+\frac{6349}{518144}a^{22}+\frac{111423}{5181440}a^{21}-\frac{469}{47104}a^{20}-\frac{255457}{5181440}a^{18}-\frac{4716731}{51814400}a^{17}+\frac{18857}{471040}a^{16}+\frac{44753}{225280}a^{14}+\frac{19546801}{51814400}a^{13}-\frac{70651}{471040}a^{12}-\frac{176229}{259072}a^{10}-\frac{441633}{323840}a^{9}+\frac{1687}{2944}a^{8}+\frac{60287}{40480}a^{6}+\frac{742243}{202400}a^{5}-\frac{2771}{1840}a^{4}-\frac{1919}{2530}a^{2}-\frac{31314}{6325}a+\frac{158}{115}$, $\frac{2641}{207257600}a^{31}+\frac{643}{51814400}a^{29}-\frac{81}{471040}a^{28}-\frac{18119}{51814400}a^{27}-\frac{13177}{12953600}a^{25}-\frac{133}{117760}a^{24}+\frac{41471}{20725760}a^{23}+\frac{36173}{5181440}a^{21}+\frac{545}{47104}a^{20}-\frac{70589}{9011200}a^{19}-\frac{1780481}{51814400}a^{17}-\frac{27173}{471040}a^{16}+\frac{7065297}{207257600}a^{15}+\frac{6776051}{51814400}a^{13}+\frac{101439}{471040}a^{12}-\frac{21577}{161920}a^{11}-\frac{359641}{647680}a^{9}-\frac{5735}{5888}a^{8}+\frac{168833}{404800}a^{7}+\frac{188059}{101200}a^{5}+\frac{3447}{920}a^{4}-\frac{15083}{25300}a^{3}-\frac{44603}{12650}a-\frac{907}{115}$, $\frac{16509}{103628800}a^{30}-\frac{2549}{12953600}a^{28}-\frac{19631}{25907200}a^{26}+\frac{2931}{3238400}a^{24}+\frac{33779}{10362880}a^{22}-\frac{3099}{1295360}a^{20}-\frac{1312703}{103628800}a^{18}+\frac{142983}{12953600}a^{16}+\frac{5705453}{103628800}a^{14}-\frac{598453}{12953600}a^{12}-\frac{178393}{1295360}a^{10}+\frac{5527}{40480}a^{8}+\frac{28459}{404800}a^{6}+\frac{763}{25300}a^{4}+\frac{24791}{25300}a^{2}-\frac{11607}{6325}$, $\frac{139}{4505600}a^{31}-\frac{2051}{20725760}a^{30}+\frac{999}{25907200}a^{29}+\frac{7807}{25907200}a^{27}+\frac{4993}{5181440}a^{26}-\frac{2471}{6476800}a^{25}-\frac{24413}{10362880}a^{23}-\frac{7309}{2072576}a^{22}+\frac{2649}{2590720}a^{21}+\frac{1398801}{103628800}a^{19}+\frac{343617}{20725760}a^{18}+\frac{78467}{25907200}a^{17}-\frac{4298491}{103628800}a^{15}-\frac{49573}{901120}a^{14}+\frac{144623}{25907200}a^{13}+\frac{553177}{2590720}a^{11}+\frac{62355}{259072}a^{10}+\frac{14409}{647680}a^{9}-\frac{77857}{101200}a^{7}-\frac{9793}{40480}a^{6}-\frac{9613}{50600}a^{5}+\frac{36173}{25300}a^{3}+\frac{757}{5060}a^{2}+\frac{27087}{12650}a$, $\frac{12663}{51814400}a^{31}+\frac{16509}{103628800}a^{30}-\frac{3513}{6476800}a^{28}-\frac{931}{404800}a^{27}-\frac{19631}{25907200}a^{26}+\frac{1993}{404800}a^{24}+\frac{65793}{5181440}a^{23}+\frac{33779}{10362880}a^{22}-\frac{17263}{647680}a^{20}-\frac{2804421}{51814400}a^{19}-\frac{1312703}{103628800}a^{18}+\frac{662571}{6476800}a^{16}+\frac{11064971}{51814400}a^{15}+\frac{5705453}{103628800}a^{14}-\frac{2893461}{6476800}a^{12}-\frac{2073619}{2590720}a^{11}-\frac{178393}{1295360}a^{10}+\frac{479409}{323840}a^{8}+\frac{1519477}{809600}a^{7}+\frac{28459}{404800}a^{6}-\frac{369177}{101200}a^{4}-\frac{131427}{50600}a^{3}-\frac{509}{25300}a^{2}+\frac{16982}{6325}$, $\frac{12629}{103628800}a^{31}+\frac{693}{2355200}a^{30}-\frac{383}{1036288}a^{29}+\frac{3439}{25907200}a^{28}-\frac{19461}{25907200}a^{27}-\frac{1957}{588800}a^{26}+\frac{755}{259072}a^{25}+\frac{4419}{6476800}a^{24}+\frac{31659}{10362880}a^{23}+\frac{4683}{235520}a^{22}-\frac{7525}{518144}a^{21}-\frac{19551}{2590720}a^{20}-\frac{1021143}{103628800}a^{19}-\frac{215031}{2355200}a^{18}+\frac{58725}{1036288}a^{17}+\frac{880987}{25907200}a^{16}+\frac{4069293}{103628800}a^{15}+\frac{848141}{2355200}a^{14}-\frac{11105}{45056}a^{13}-\frac{3270497}{25907200}a^{12}-\frac{366701}{2590720}a^{11}-\frac{79597}{58880}a^{10}+\frac{104725}{129536}a^{9}+\frac{151667}{323840}a^{8}+\frac{154383}{809600}a^{7}+\frac{66511}{18400}a^{6}-\frac{14645}{8096}a^{5}-\frac{113243}{50600}a^{4}+\frac{20617}{50600}a^{3}-\frac{12767}{2300}a^{2}-\frac{291}{506}a+\frac{30816}{6325}$, $\frac{5853}{41451520}a^{31}+\frac{5853}{20725760}a^{30}+\frac{1147}{5181440}a^{29}-\frac{14599}{10362880}a^{27}-\frac{14599}{5181440}a^{26}-\frac{2701}{1295360}a^{25}+\frac{31571}{4145152}a^{23}+\frac{31571}{2072576}a^{22}+\frac{5173}{518144}a^{21}-\frac{1409311}{41451520}a^{19}-\frac{1409311}{20725760}a^{18}-\frac{217289}{5181440}a^{17}+\frac{235419}{1802240}a^{15}+\frac{235419}{901120}a^{14}+\frac{33981}{225280}a^{13}-\frac{251039}{518144}a^{11}-\frac{251039}{259072}a^{10}-\frac{4469}{8096}a^{9}+\frac{6359}{5060}a^{7}+\frac{6359}{2530}a^{6}+\frac{47349}{40480}a^{5}-\frac{10353}{5060}a^{3}-\frac{7823}{2530}a^{2}-\frac{233}{2530}a$, $\frac{1}{32384}a^{31}+\frac{11383}{51814400}a^{30}+\frac{20377}{51814400}a^{29}+\frac{107}{1036288}a^{28}+\frac{13}{80960}a^{27}-\frac{30037}{12953600}a^{26}-\frac{50863}{12953600}a^{25}-\frac{1477}{1295360}a^{24}-\frac{111}{32384}a^{23}+\frac{70233}{5181440}a^{22}+\frac{123447}{5181440}a^{21}+\frac{3065}{518144}a^{20}+\frac{581}{32384}a^{19}-\frac{3076861}{51814400}a^{18}-\frac{5351059}{51814400}a^{17}-\frac{22137}{1036288}a^{16}-\frac{10707}{161920}a^{15}+\frac{586097}{2252800}a^{14}+\frac{23015769}{51814400}a^{13}+\frac{431751}{5181440}a^{12}+\frac{6829}{32384}a^{11}-\frac{672381}{647680}a^{10}-\frac{254891}{161920}a^{9}-\frac{6425}{64768}a^{8}-\frac{24269}{32384}a^{7}+\frac{1106241}{404800}a^{6}+\frac{811927}{202400}a^{5}-\frac{609}{2024}a^{4}+\frac{17331}{10120}a^{3}-\frac{98511}{25300}a^{2}-\frac{27466}{6325}a+\frac{3767}{1265}$, $\frac{6139}{207257600}a^{31}-\frac{1249}{20725760}a^{30}+\frac{89}{225280}a^{29}+\frac{1923}{6476800}a^{28}-\frac{43881}{51814400}a^{27}+\frac{1175}{1036288}a^{26}-\frac{5337}{1295360}a^{25}-\frac{3661}{809600}a^{24}+\frac{128789}{20725760}a^{23}-\frac{14735}{2072576}a^{22}+\frac{12145}{518144}a^{21}+\frac{18533}{647680}a^{20}-\frac{5857513}{207257600}a^{19}+\frac{576203}{20725760}a^{18}-\frac{542709}{5181440}a^{17}-\frac{887641}{6476800}a^{16}+\frac{18998603}{207257600}a^{15}-\frac{524989}{4145152}a^{14}+\frac{2141631}{5181440}a^{13}+\frac{3543711}{6476800}a^{12}-\frac{926043}{2590720}a^{11}+\frac{143235}{259072}a^{10}-\frac{23245}{16192}a^{9}-\frac{667889}{323840}a^{8}+\frac{420007}{404800}a^{7}-\frac{154159}{80960}a^{6}+\frac{129809}{40480}a^{5}+\frac{265071}{50600}a^{4}-\frac{28271}{12650}a^{3}+\frac{2845}{1012}a^{2}-\frac{4558}{1265}a-\frac{48357}{6325}$, $\frac{7807}{103628800}a^{31}-\frac{33127}{51814400}a^{30}-\frac{7739}{51814400}a^{29}+\frac{6421}{5181440}a^{28}-\frac{1941}{1126400}a^{27}+\frac{4291}{563200}a^{26}+\frac{23981}{12953600}a^{25}-\frac{19211}{1295360}a^{24}+\frac{115937}{10362880}a^{23}-\frac{231017}{5181440}a^{22}-\frac{47669}{5181440}a^{21}+\frac{44987}{518144}a^{20}-\frac{5476069}{103628800}a^{19}+\frac{10104909}{51814400}a^{18}+\frac{1909513}{51814400}a^{17}-\frac{1947687}{5181440}a^{16}+\frac{22253559}{103628800}a^{15}-\frac{40318359}{51814400}a^{14}-\frac{8262203}{51814400}a^{13}+\frac{7712373}{5181440}a^{12}-\frac{2119113}{2590720}a^{11}+\frac{1871269}{647680}a^{10}+\frac{48681}{80960}a^{9}-\frac{180993}{32384}a^{8}+\frac{2082339}{809600}a^{7}-\frac{3294829}{404800}a^{6}-\frac{116707}{101200}a^{5}+\frac{309081}{20240}a^{4}-\frac{260379}{50600}a^{3}+\frac{289029}{25300}a^{2}+\frac{18559}{12650}a-\frac{26234}{1265}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18060264289735.246 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 18060264289735.246 \cdot 576}{8\cdot\sqrt{788112603159847969611382715115371034050560000000000000000}}\cr\approx \mathstrut & 0.273300455328539 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 12*x^28 + 86*x^24 - 427*x^20 + 1809*x^16 - 6832*x^12 + 22016*x^8 - 49152*x^4 + 65536);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), 4.4.2525.1, 4.0.40400.1, 4.0.161600.4, 4.4.161600.1, \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{8})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.2556625625.1, 8.8.654496160000.1, 8.8.10471938560000.1, 8.0.10471938560000.1, 8.0.40960000.1, 8.0.1632160000.5, 8.0.417832960000.16, 8.0.26114560000.3, 8.0.417832960000.5, 8.0.417832960000.10, 8.8.26114560000.1, 16.0.174584382462361600000000.1, 16.0.428365223454745600000000.1, 16.0.28073343284330207641600000000.2, 16.0.109661497204414873600000000.2, 16.0.28073343284330207641600000000.1, 16.0.109661497204414873600000000.1, 16.16.28073343284330207641600000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{4}$ R ${\href{/padicField/7.4.0.1}{4} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ ${\href{/padicField/43.2.0.1}{2} }^{16}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.8.0.1}{8} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$4$$4$$32$
Deg $16$$4$$4$$32$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(101\) Copy content Toggle raw display 101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.4.2.1$x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(401\) Copy content Toggle raw display $\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{401}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$