\\ Pari/GP code for working with number field 32.0.785411287106652838033363851140085365286337539393649349536153620008513161719185408.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^32 + 928*y^30 + 390224*y^28 + 98336448*y^26 + 16550375400*y^24 + 1962506736320*y^22 + 168549136238560*y^20 + 10613779893422464*y^18 + 490555639449119508*y^16 + 16494044688724018240*y^14 + 395707126668569855776*y^12 + 6557432384793443324288*y^10 + 71312077184628696151632*y^8 + 468869689667356285628544*y^6 + 1618716785756349081336640*y^4 + 2209072319385135216882944*y^2 + 500492947360694697575042, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^32 + 928*x^30 + 390224*x^28 + 98336448*x^26 + 16550375400*x^24 + 1962506736320*x^22 + 168549136238560*x^20 + 10613779893422464*x^18 + 490555639449119508*x^16 + 16494044688724018240*x^14 + 395707126668569855776*x^12 + 6557432384793443324288*x^10 + 71312077184628696151632*x^8 + 468869689667356285628544*x^6 + 1618716785756349081336640*x^4 + 2209072319385135216882944*x^2 + 500492947360694697575042, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])