Properties

Label 32.0.781...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $7.811\times 10^{57}$
Root discriminant \(64.44\)
Ramified primes $2,3,5,89,181$
Class number $1728$ (GRH)
Class group [2, 6, 144] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456)
 
gp: K = bnfinit(y^32 - 6*y^31 - 3*y^30 + 38*y^29 + 240*y^28 - 870*y^27 - 1253*y^26 + 5504*y^25 + 8960*y^24 - 30532*y^23 - 82591*y^22 + 273588*y^21 + 232111*y^20 - 1662294*y^19 + 1506913*y^18 + 3228344*y^17 - 8242121*y^16 + 2035750*y^15 + 20473926*y^14 - 37183070*y^13 + 23899872*y^12 + 19231684*y^11 - 44051780*y^10 + 29086832*y^9 + 22770705*y^8 - 53249356*y^7 + 38434576*y^6 + 9011088*y^5 - 26789548*y^4 + 18764896*y^3 + 5552960*y^2 - 14383456*y + 9709456, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456)
 

\( x^{32} - 6 x^{31} - 3 x^{30} + 38 x^{29} + 240 x^{28} - 870 x^{27} - 1253 x^{26} + 5504 x^{25} + \cdots + 9709456 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7811497343330649377718034300042226077532160000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 89^{8}\cdot 181^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(64.44\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{1/2}5^{1/2}89^{1/2}181^{1/2}\approx 1390.3524732958906$
Ramified primes:   \(2\), \(3\), \(5\), \(89\), \(181\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5}a^{18}-\frac{1}{5}a^{17}+\frac{2}{5}a^{16}+\frac{2}{5}a^{15}-\frac{2}{5}a^{14}-\frac{2}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{2}{5}a^{9}-\frac{2}{5}a^{8}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}$, $\frac{1}{5}a^{19}+\frac{1}{5}a^{17}-\frac{1}{5}a^{16}-\frac{2}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{11}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}-\frac{2}{5}a^{8}+\frac{1}{5}a^{7}+\frac{1}{5}a^{5}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{20}-\frac{2}{5}a^{16}+\frac{1}{5}a^{15}-\frac{2}{5}a^{12}+\frac{2}{5}a^{10}-\frac{2}{5}a^{8}-\frac{1}{5}a^{5}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{21}-\frac{2}{5}a^{17}+\frac{1}{5}a^{16}-\frac{2}{5}a^{13}+\frac{2}{5}a^{11}-\frac{2}{5}a^{9}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{25}a^{22}+\frac{2}{25}a^{21}+\frac{2}{25}a^{20}-\frac{2}{25}a^{19}-\frac{2}{25}a^{18}+\frac{2}{5}a^{17}+\frac{2}{25}a^{15}+\frac{12}{25}a^{14}+\frac{1}{5}a^{13}-\frac{2}{25}a^{12}-\frac{3}{25}a^{11}-\frac{2}{25}a^{10}+\frac{4}{25}a^{9}-\frac{2}{5}a^{8}-\frac{3}{25}a^{7}+\frac{9}{25}a^{6}+\frac{4}{25}a^{5}+\frac{1}{5}a^{4}-\frac{1}{25}a^{3}+\frac{9}{25}a^{2}+\frac{2}{25}a+\frac{4}{25}$, $\frac{1}{25}a^{23}-\frac{2}{25}a^{21}-\frac{1}{25}a^{20}+\frac{2}{25}a^{19}-\frac{1}{25}a^{18}-\frac{1}{5}a^{17}+\frac{12}{25}a^{16}+\frac{8}{25}a^{15}+\frac{11}{25}a^{14}-\frac{12}{25}a^{13}-\frac{4}{25}a^{12}-\frac{1}{25}a^{11}+\frac{8}{25}a^{10}+\frac{12}{25}a^{9}+\frac{12}{25}a^{8}-\frac{2}{5}a^{7}-\frac{4}{25}a^{6}+\frac{7}{25}a^{5}-\frac{11}{25}a^{4}+\frac{1}{25}a^{3}-\frac{11}{25}a^{2}-\frac{1}{5}a+\frac{12}{25}$, $\frac{1}{50}a^{24}-\frac{1}{25}a^{21}-\frac{2}{25}a^{20}+\frac{1}{50}a^{18}+\frac{6}{25}a^{17}+\frac{13}{50}a^{16}-\frac{9}{25}a^{14}+\frac{3}{25}a^{13}-\frac{1}{10}a^{12}-\frac{4}{25}a^{11}-\frac{6}{25}a^{10}-\frac{1}{5}a^{9}-\frac{3}{10}a^{8}+\frac{2}{5}a^{7}+\frac{3}{10}a^{6}+\frac{11}{25}a^{5}-\frac{19}{50}a^{4}-\frac{4}{25}a^{3}+\frac{3}{50}a^{2}+\frac{8}{25}a+\frac{4}{25}$, $\frac{1}{50}a^{25}+\frac{2}{25}a^{20}-\frac{3}{50}a^{19}-\frac{1}{25}a^{18}-\frac{7}{50}a^{17}-\frac{2}{5}a^{16}+\frac{8}{25}a^{15}+\frac{1}{10}a^{13}+\frac{4}{25}a^{12}+\frac{6}{25}a^{11}-\frac{2}{25}a^{10}+\frac{13}{50}a^{9}+\frac{2}{5}a^{8}+\frac{9}{50}a^{7}-\frac{2}{5}a^{6}-\frac{1}{50}a^{5}-\frac{9}{25}a^{4}-\frac{9}{50}a^{3}+\frac{7}{25}a^{2}+\frac{6}{25}a+\frac{9}{25}$, $\frac{1}{950}a^{26}+\frac{1}{190}a^{25}+\frac{1}{950}a^{24}-\frac{6}{475}a^{22}-\frac{16}{475}a^{21}-\frac{81}{950}a^{20}-\frac{43}{950}a^{19}+\frac{44}{475}a^{18}+\frac{277}{950}a^{17}-\frac{381}{950}a^{16}-\frac{52}{475}a^{15}-\frac{117}{950}a^{14}+\frac{449}{950}a^{13}-\frac{149}{950}a^{12}+\frac{112}{475}a^{11}+\frac{7}{190}a^{10}-\frac{13}{950}a^{9}+\frac{197}{475}a^{8}+\frac{331}{950}a^{7}+\frac{198}{475}a^{6}+\frac{81}{950}a^{5}-\frac{49}{475}a^{4}+\frac{363}{950}a^{3}-\frac{243}{950}a^{2}-\frac{7}{95}a$, $\frac{1}{950}a^{27}-\frac{1}{190}a^{25}-\frac{1}{190}a^{24}-\frac{6}{475}a^{23}-\frac{1}{95}a^{22}+\frac{3}{950}a^{21}-\frac{9}{475}a^{20}-\frac{29}{475}a^{19}+\frac{13}{190}a^{18}+\frac{1}{950}a^{17}+\frac{91}{950}a^{16}-\frac{319}{950}a^{15}+\frac{4}{475}a^{14}+\frac{9}{50}a^{13}-\frac{17}{50}a^{12}+\frac{207}{950}a^{11}+\frac{1}{475}a^{10}-\frac{103}{475}a^{9}+\frac{261}{950}a^{8}-\frac{202}{475}a^{7}+\frac{419}{950}a^{6}+\frac{43}{475}a^{5}+\frac{131}{950}a^{4}+\frac{279}{950}a^{3}-\frac{71}{950}a^{2}+\frac{156}{475}a$, $\frac{1}{383800}a^{28}+\frac{67}{191900}a^{27}+\frac{43}{383800}a^{26}+\frac{1597}{191900}a^{25}+\frac{709}{191900}a^{24}+\frac{1167}{191900}a^{23}+\frac{2723}{383800}a^{22}+\frac{2554}{47975}a^{21}-\frac{2931}{38380}a^{20}+\frac{1973}{47975}a^{19}-\frac{843}{15352}a^{18}-\frac{44077}{95950}a^{17}-\frac{29783}{383800}a^{16}-\frac{95609}{191900}a^{15}-\frac{28113}{76760}a^{14}+\frac{10499}{95950}a^{13}-\frac{9483}{76760}a^{12}-\frac{17823}{191900}a^{11}-\frac{21333}{47975}a^{10}+\frac{61969}{191900}a^{9}+\frac{16437}{47975}a^{8}+\frac{1379}{5050}a^{7}+\frac{603}{2525}a^{6}-\frac{3111}{95950}a^{5}-\frac{4977}{20200}a^{4}-\frac{37}{5050}a^{3}+\frac{73889}{191900}a^{2}-\frac{2493}{9595}a-\frac{1629}{5050}$, $\frac{1}{383800}a^{29}-\frac{137}{383800}a^{27}-\frac{18}{47975}a^{26}+\frac{1639}{191900}a^{25}+\frac{1101}{191900}a^{24}-\frac{1377}{383800}a^{23}+\frac{687}{191900}a^{22}+\frac{89}{1900}a^{21}+\frac{4717}{95950}a^{20}-\frac{16747}{383800}a^{19}-\frac{18217}{191900}a^{18}+\frac{28553}{383800}a^{17}-\frac{2028}{9595}a^{16}+\frac{93671}{383800}a^{15}-\frac{2319}{7676}a^{14}+\frac{141913}{383800}a^{13}-\frac{38327}{95950}a^{12}+\frac{38657}{95950}a^{11}+\frac{11601}{38380}a^{10}-\frac{1577}{5050}a^{9}-\frac{32683}{95950}a^{8}-\frac{649}{47975}a^{7}-\frac{19751}{95950}a^{6}-\frac{79427}{383800}a^{5}+\frac{10907}{191900}a^{4}-\frac{64947}{191900}a^{3}+\frac{817}{5050}a^{2}-\frac{49}{190}a-\frac{442}{2525}$, $\frac{1}{71\!\cdots\!00}a^{30}-\frac{247451927368287}{88\!\cdots\!50}a^{29}-\frac{66\!\cdots\!17}{71\!\cdots\!00}a^{28}-\frac{41\!\cdots\!41}{35\!\cdots\!60}a^{27}+\frac{13\!\cdots\!49}{35\!\cdots\!00}a^{26}+\frac{24\!\cdots\!29}{35\!\cdots\!00}a^{25}-\frac{15\!\cdots\!99}{37\!\cdots\!00}a^{24}-\frac{63\!\cdots\!57}{35\!\cdots\!00}a^{23}+\frac{54\!\cdots\!53}{35\!\cdots\!00}a^{22}-\frac{54\!\cdots\!91}{17\!\cdots\!30}a^{21}-\frac{11\!\cdots\!63}{14\!\cdots\!40}a^{20}-\frac{58\!\cdots\!19}{35\!\cdots\!00}a^{19}+\frac{69\!\cdots\!17}{71\!\cdots\!00}a^{18}+\frac{16\!\cdots\!82}{44\!\cdots\!75}a^{17}+\frac{85\!\cdots\!31}{71\!\cdots\!00}a^{16}+\frac{10\!\cdots\!03}{35\!\cdots\!00}a^{15}+\frac{26\!\cdots\!53}{71\!\cdots\!00}a^{14}+\frac{62\!\cdots\!01}{17\!\cdots\!00}a^{13}-\frac{13\!\cdots\!49}{17\!\cdots\!00}a^{12}+\frac{23\!\cdots\!83}{35\!\cdots\!00}a^{11}+\frac{10\!\cdots\!57}{88\!\cdots\!50}a^{10}+\frac{77\!\cdots\!36}{44\!\cdots\!75}a^{9}+\frac{87\!\cdots\!61}{17\!\cdots\!00}a^{8}+\frac{15\!\cdots\!59}{17\!\cdots\!30}a^{7}+\frac{27\!\cdots\!41}{71\!\cdots\!00}a^{6}+\frac{65\!\cdots\!29}{35\!\cdots\!00}a^{5}-\frac{14\!\cdots\!49}{35\!\cdots\!00}a^{4}+\frac{38\!\cdots\!81}{35\!\cdots\!60}a^{3}-\frac{21\!\cdots\!37}{17\!\cdots\!00}a^{2}-\frac{15\!\cdots\!89}{88\!\cdots\!50}a+\frac{11\!\cdots\!79}{23\!\cdots\!25}$, $\frac{1}{20\!\cdots\!00}a^{31}+\frac{17\!\cdots\!09}{20\!\cdots\!00}a^{30}-\frac{81\!\cdots\!59}{20\!\cdots\!00}a^{29}+\frac{24\!\cdots\!91}{20\!\cdots\!00}a^{28}-\frac{19\!\cdots\!22}{12\!\cdots\!25}a^{27}+\frac{18\!\cdots\!82}{12\!\cdots\!25}a^{26}-\frac{41\!\cdots\!07}{20\!\cdots\!00}a^{25}+\frac{71\!\cdots\!29}{20\!\cdots\!00}a^{24}-\frac{18\!\cdots\!11}{10\!\cdots\!00}a^{23}+\frac{18\!\cdots\!17}{10\!\cdots\!00}a^{22}-\frac{85\!\cdots\!33}{10\!\cdots\!00}a^{21}+\frac{59\!\cdots\!79}{20\!\cdots\!00}a^{20}-\frac{58\!\cdots\!67}{20\!\cdots\!00}a^{19}+\frac{16\!\cdots\!97}{40\!\cdots\!20}a^{18}-\frac{18\!\cdots\!37}{42\!\cdots\!56}a^{17}+\frac{50\!\cdots\!13}{11\!\cdots\!00}a^{16}+\frac{62\!\cdots\!33}{20\!\cdots\!00}a^{15}-\frac{75\!\cdots\!11}{20\!\cdots\!00}a^{14}-\frac{29\!\cdots\!21}{10\!\cdots\!00}a^{13}+\frac{44\!\cdots\!59}{20\!\cdots\!60}a^{12}-\frac{47\!\cdots\!77}{10\!\cdots\!00}a^{11}+\frac{99\!\cdots\!71}{50\!\cdots\!00}a^{10}-\frac{11\!\cdots\!49}{50\!\cdots\!00}a^{9}-\frac{11\!\cdots\!03}{20\!\cdots\!16}a^{8}+\frac{42\!\cdots\!93}{20\!\cdots\!00}a^{7}+\frac{23\!\cdots\!11}{20\!\cdots\!00}a^{6}+\frac{28\!\cdots\!27}{10\!\cdots\!00}a^{5}-\frac{36\!\cdots\!19}{10\!\cdots\!00}a^{4}+\frac{89\!\cdots\!69}{50\!\cdots\!00}a^{3}+\frac{76\!\cdots\!67}{20\!\cdots\!16}a^{2}-\frac{14\!\cdots\!18}{65\!\cdots\!75}a-\frac{27\!\cdots\!19}{84\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{6}\times C_{144}$, which has order $1728$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $1728$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{1627845032663482522840492893456547271916689873272245695949416982569320007}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{31} + \frac{2012429765988039209818160133895250141348037107189662828926150776032424859}{1337007894118532185875466568184633131955574620724851992827656509376090683879425} a^{30} + \frac{13759712405493028043590175188230340305064295536355342594510802084803455161}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{29} - \frac{48922531942436220819637755209344063654381705839632992625406692964087653927}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{28} - \frac{223369023082904331656438643027614275177399466386285123236045034566577739403}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{27} + \frac{952580716947140132875220058356692438229460770693204435845594525072937037729}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{26} + \frac{3152002488334113321455728557346448458863653750565264135126758491504053075901}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{25} - \frac{2879812817908467617978519788585093316273642405559307177569978408549775521343}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{24} - \frac{2146171326130978629292904833659803747024644613635934458228215163808061026557}{534803157647412874350186627273853252782229848289940797131062603750436273551770} a^{23} + \frac{27722293079305511999654012672968576687816097341864651303173755808728066651703}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{22} + \frac{1773231882584899637204261391768104487136697150290726758660942419478907651723}{56295069226043460457914381818300342398129457714730610224322379342151186689660} a^{21} - \frac{13454230451241309118197063492425218526175352610145914558678851799262891755214}{267401578823706437175093313636926626391114924144970398565531301875218136775885} a^{20} - \frac{697576169190074790325630270556994850784106728096276798892451150318987508489861}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{19} + \frac{1997817855819113633831009898994301577006857457857852379795902919994518779188991}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{18} - \frac{10146764054051766066140109823297885503238031628940877280483493903731813424469}{281475346130217302289571909091501711990647288573653051121611896710755933448300} a^{17} - \frac{13585390660378047321203135503087731994671115472263302358324530996391678685883}{12583603709350891161180861818208311830170114077410371697201473029422029965924} a^{16} + \frac{7369234500687052857909209026947112642714546689220903144372586500077608265477549}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{15} + \frac{5442489448521467364866072642243035039248875785523600062464503979561341625850739}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{14} - \frac{14704201272569522736980231027875194747632156270122898041612578390114770172343771}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{13} + \frac{29754908619489901771091925960291428713121022428313876077859244280877548130024633}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{12} - \frac{775346029433912280574289310741533022641560966919787849276880330325702436194117}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{11} - \frac{10525573075023072651614795499499266072441314486702111897345278580732928810167333}{1337007894118532185875466568184633131955574620724851992827656509376090683879425} a^{10} + \frac{15970343442924733571724895731379279175174441977701544601854133483362624347995193}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{9} + \frac{1690622564768974073243402315044916876924715436222826470053149698171757020113159}{2674015788237064371750933136369266263911149241449703985655313018752181367758850} a^{8} - \frac{62441125135346216880673459176109981674165748895688991169465555431373629695466743}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{7} + \frac{12083594501261242732886914223628048946588780707071977810591579662148320923681532}{1337007894118532185875466568184633131955574620724851992827656509376090683879425} a^{6} - \frac{193580994776284033290123355133662362519837707198533000061097426733319750169854}{267401578823706437175093313636926626391114924144970398565531301875218136775885} a^{5} - \frac{36981604118393868717394273710122823509042464814234691133702984675867881025103781}{5348031576474128743501866272738532527822298482899407971310626037504362735517700} a^{4} + \frac{5648354996544258804404453253959000378451255233666105203646705189320051959901192}{1337007894118532185875466568184633131955574620724851992827656509376090683879425} a^{3} - \frac{233088536289669796960667468850949006306843100044692369761158570180646442758608}{1337007894118532185875466568184633131955574620724851992827656509376090683879425} a^{2} - \frac{333518852209464878827231098749047046728721505127712591022930097780250904124718}{70368836532554325572392977272875427997661822143413262780402974177688983362075} a + \frac{290594497325839049821850056890052203593705123682644459704509332268602142472}{90332267692624294701403051698171281126651889786153097279079556068920389425} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{20\!\cdots\!88}{65\!\cdots\!75}a^{31}-\frac{20\!\cdots\!63}{10\!\cdots\!00}a^{30}-\frac{19\!\cdots\!87}{26\!\cdots\!00}a^{29}+\frac{13\!\cdots\!77}{10\!\cdots\!00}a^{28}+\frac{19\!\cdots\!29}{26\!\cdots\!00}a^{27}-\frac{19\!\cdots\!93}{65\!\cdots\!75}a^{26}-\frac{21\!\cdots\!09}{52\!\cdots\!00}a^{25}+\frac{20\!\cdots\!23}{10\!\cdots\!00}a^{24}+\frac{15\!\cdots\!71}{52\!\cdots\!00}a^{23}-\frac{28\!\cdots\!73}{26\!\cdots\!90}a^{22}-\frac{36\!\cdots\!69}{13\!\cdots\!50}a^{21}+\frac{39\!\cdots\!21}{42\!\cdots\!24}a^{20}+\frac{43\!\cdots\!43}{52\!\cdots\!00}a^{19}-\frac{59\!\cdots\!73}{10\!\cdots\!00}a^{18}+\frac{11\!\cdots\!79}{26\!\cdots\!00}a^{17}+\frac{70\!\cdots\!37}{62\!\cdots\!00}a^{16}-\frac{13\!\cdots\!13}{52\!\cdots\!00}a^{15}+\frac{28\!\cdots\!19}{10\!\cdots\!00}a^{14}+\frac{44\!\cdots\!74}{65\!\cdots\!75}a^{13}-\frac{59\!\cdots\!13}{52\!\cdots\!00}a^{12}+\frac{32\!\cdots\!89}{52\!\cdots\!00}a^{11}+\frac{35\!\cdots\!91}{65\!\cdots\!75}a^{10}-\frac{29\!\cdots\!83}{26\!\cdots\!00}a^{9}+\frac{11\!\cdots\!29}{26\!\cdots\!00}a^{8}+\frac{43\!\cdots\!31}{65\!\cdots\!75}a^{7}-\frac{31\!\cdots\!51}{21\!\cdots\!20}a^{6}+\frac{11\!\cdots\!07}{21\!\cdots\!12}a^{5}+\frac{44\!\cdots\!89}{13\!\cdots\!50}a^{4}-\frac{35\!\cdots\!61}{52\!\cdots\!80}a^{3}+\frac{33\!\cdots\!11}{65\!\cdots\!75}a^{2}+\frac{23\!\cdots\!11}{13\!\cdots\!50}a-\frac{12\!\cdots\!29}{26\!\cdots\!90}$, $\frac{37\!\cdots\!07}{20\!\cdots\!00}a^{31}-\frac{37\!\cdots\!21}{40\!\cdots\!20}a^{30}-\frac{33\!\cdots\!91}{20\!\cdots\!00}a^{29}+\frac{24\!\cdots\!01}{40\!\cdots\!20}a^{28}+\frac{52\!\cdots\!57}{10\!\cdots\!00}a^{27}-\frac{28\!\cdots\!41}{25\!\cdots\!50}a^{26}-\frac{79\!\cdots\!29}{20\!\cdots\!00}a^{25}+\frac{14\!\cdots\!23}{20\!\cdots\!00}a^{24}+\frac{34\!\cdots\!93}{12\!\cdots\!25}a^{23}-\frac{34\!\cdots\!99}{10\!\cdots\!00}a^{22}-\frac{22\!\cdots\!51}{10\!\cdots\!00}a^{21}+\frac{63\!\cdots\!93}{20\!\cdots\!00}a^{20}+\frac{19\!\cdots\!17}{20\!\cdots\!00}a^{19}-\frac{47\!\cdots\!97}{20\!\cdots\!00}a^{18}-\frac{52\!\cdots\!01}{10\!\cdots\!00}a^{17}+\frac{86\!\cdots\!67}{11\!\cdots\!00}a^{16}-\frac{13\!\cdots\!39}{20\!\cdots\!00}a^{15}-\frac{38\!\cdots\!49}{40\!\cdots\!20}a^{14}+\frac{78\!\cdots\!61}{25\!\cdots\!50}a^{13}-\frac{23\!\cdots\!83}{10\!\cdots\!00}a^{12}-\frac{10\!\cdots\!99}{20\!\cdots\!60}a^{11}+\frac{16\!\cdots\!61}{50\!\cdots\!90}a^{10}-\frac{10\!\cdots\!69}{50\!\cdots\!00}a^{9}+\frac{12\!\cdots\!99}{10\!\cdots\!80}a^{8}+\frac{55\!\cdots\!39}{40\!\cdots\!20}a^{7}-\frac{19\!\cdots\!39}{20\!\cdots\!00}a^{6}+\frac{86\!\cdots\!49}{12\!\cdots\!25}a^{5}+\frac{13\!\cdots\!89}{10\!\cdots\!00}a^{4}+\frac{28\!\cdots\!78}{12\!\cdots\!25}a^{3}+\frac{77\!\cdots\!47}{50\!\cdots\!00}a^{2}-\frac{12\!\cdots\!33}{26\!\cdots\!10}a+\frac{82\!\cdots\!83}{84\!\cdots\!25}$, $\frac{68\!\cdots\!63}{20\!\cdots\!00}a^{31}-\frac{37\!\cdots\!01}{20\!\cdots\!00}a^{30}-\frac{47\!\cdots\!19}{20\!\cdots\!00}a^{29}+\frac{27\!\cdots\!21}{20\!\cdots\!00}a^{28}+\frac{90\!\cdots\!57}{10\!\cdots\!00}a^{27}-\frac{64\!\cdots\!03}{25\!\cdots\!50}a^{26}-\frac{13\!\cdots\!81}{20\!\cdots\!00}a^{25}+\frac{35\!\cdots\!67}{20\!\cdots\!00}a^{24}+\frac{56\!\cdots\!06}{12\!\cdots\!25}a^{23}-\frac{95\!\cdots\!91}{10\!\cdots\!00}a^{22}-\frac{38\!\cdots\!03}{10\!\cdots\!00}a^{21}+\frac{16\!\cdots\!77}{19\!\cdots\!00}a^{20}+\frac{30\!\cdots\!97}{20\!\cdots\!00}a^{19}-\frac{22\!\cdots\!81}{40\!\cdots\!20}a^{18}+\frac{26\!\cdots\!59}{21\!\cdots\!80}a^{17}+\frac{19\!\cdots\!47}{11\!\cdots\!00}a^{16}-\frac{47\!\cdots\!23}{20\!\cdots\!00}a^{15}-\frac{29\!\cdots\!57}{20\!\cdots\!00}a^{14}+\frac{21\!\cdots\!03}{25\!\cdots\!50}a^{13}-\frac{88\!\cdots\!47}{10\!\cdots\!00}a^{12}-\frac{23\!\cdots\!63}{10\!\cdots\!00}a^{11}+\frac{41\!\cdots\!32}{25\!\cdots\!45}a^{10}-\frac{15\!\cdots\!49}{10\!\cdots\!80}a^{9}-\frac{48\!\cdots\!11}{50\!\cdots\!00}a^{8}+\frac{32\!\cdots\!39}{20\!\cdots\!00}a^{7}-\frac{71\!\cdots\!79}{39\!\cdots\!20}a^{6}+\frac{21\!\cdots\!88}{12\!\cdots\!25}a^{5}+\frac{10\!\cdots\!53}{10\!\cdots\!00}a^{4}-\frac{24\!\cdots\!72}{25\!\cdots\!45}a^{3}+\frac{76\!\cdots\!23}{50\!\cdots\!00}a^{2}+\frac{48\!\cdots\!91}{13\!\cdots\!50}a-\frac{43\!\cdots\!53}{84\!\cdots\!25}$, $\frac{53\!\cdots\!31}{14\!\cdots\!00}a^{31}-\frac{27\!\cdots\!51}{14\!\cdots\!00}a^{30}-\frac{84\!\cdots\!03}{28\!\cdots\!20}a^{29}+\frac{17\!\cdots\!91}{14\!\cdots\!00}a^{28}+\frac{76\!\cdots\!79}{75\!\cdots\!40}a^{27}-\frac{16\!\cdots\!09}{71\!\cdots\!80}a^{26}-\frac{10\!\cdots\!93}{14\!\cdots\!00}a^{25}+\frac{41\!\cdots\!57}{28\!\cdots\!20}a^{24}+\frac{17\!\cdots\!29}{35\!\cdots\!00}a^{23}-\frac{51\!\cdots\!61}{71\!\cdots\!00}a^{22}-\frac{54\!\cdots\!01}{14\!\cdots\!00}a^{21}+\frac{19\!\cdots\!71}{28\!\cdots\!20}a^{20}+\frac{22\!\cdots\!17}{14\!\cdots\!00}a^{19}-\frac{69\!\cdots\!67}{14\!\cdots\!00}a^{18}+\frac{13\!\cdots\!09}{14\!\cdots\!00}a^{17}+\frac{60\!\cdots\!67}{44\!\cdots\!00}a^{16}-\frac{27\!\cdots\!27}{14\!\cdots\!00}a^{15}-\frac{15\!\cdots\!03}{14\!\cdots\!00}a^{14}+\frac{64\!\cdots\!48}{89\!\cdots\!25}a^{13}-\frac{56\!\cdots\!19}{71\!\cdots\!00}a^{12}+\frac{48\!\cdots\!51}{71\!\cdots\!00}a^{11}+\frac{96\!\cdots\!84}{89\!\cdots\!25}a^{10}-\frac{33\!\cdots\!61}{35\!\cdots\!00}a^{9}-\frac{13\!\cdots\!47}{71\!\cdots\!80}a^{8}+\frac{26\!\cdots\!79}{14\!\cdots\!00}a^{7}-\frac{24\!\cdots\!21}{14\!\cdots\!00}a^{6}+\frac{58\!\cdots\!03}{35\!\cdots\!00}a^{5}+\frac{77\!\cdots\!79}{71\!\cdots\!00}a^{4}-\frac{15\!\cdots\!01}{17\!\cdots\!50}a^{3}+\frac{10\!\cdots\!51}{35\!\cdots\!00}a^{2}+\frac{15\!\cdots\!31}{17\!\cdots\!50}a-\frac{86\!\cdots\!44}{11\!\cdots\!75}$, $\frac{28\!\cdots\!83}{10\!\cdots\!00}a^{31}-\frac{17\!\cdots\!21}{10\!\cdots\!80}a^{30}-\frac{70\!\cdots\!79}{10\!\cdots\!00}a^{29}+\frac{52\!\cdots\!73}{50\!\cdots\!00}a^{28}+\frac{34\!\cdots\!99}{50\!\cdots\!00}a^{27}-\frac{12\!\cdots\!29}{50\!\cdots\!00}a^{26}-\frac{34\!\cdots\!23}{10\!\cdots\!00}a^{25}+\frac{18\!\cdots\!36}{12\!\cdots\!25}a^{24}+\frac{13\!\cdots\!29}{50\!\cdots\!00}a^{23}-\frac{10\!\cdots\!47}{12\!\cdots\!25}a^{22}-\frac{12\!\cdots\!03}{52\!\cdots\!00}a^{21}+\frac{18\!\cdots\!43}{25\!\cdots\!50}a^{20}+\frac{64\!\cdots\!79}{10\!\cdots\!00}a^{19}-\frac{22\!\cdots\!17}{50\!\cdots\!00}a^{18}+\frac{21\!\cdots\!63}{52\!\cdots\!00}a^{17}+\frac{10\!\cdots\!39}{14\!\cdots\!50}a^{16}-\frac{19\!\cdots\!57}{10\!\cdots\!00}a^{15}+\frac{31\!\cdots\!07}{50\!\cdots\!00}a^{14}+\frac{11\!\cdots\!29}{25\!\cdots\!50}a^{13}-\frac{46\!\cdots\!91}{50\!\cdots\!00}a^{12}+\frac{20\!\cdots\!07}{25\!\cdots\!50}a^{11}-\frac{11\!\cdots\!88}{12\!\cdots\!25}a^{10}-\frac{10\!\cdots\!91}{25\!\cdots\!50}a^{9}+\frac{87\!\cdots\!01}{25\!\cdots\!50}a^{8}+\frac{22\!\cdots\!59}{10\!\cdots\!00}a^{7}-\frac{10\!\cdots\!13}{12\!\cdots\!25}a^{6}+\frac{26\!\cdots\!11}{50\!\cdots\!00}a^{5}-\frac{20\!\cdots\!28}{12\!\cdots\!25}a^{4}-\frac{31\!\cdots\!01}{25\!\cdots\!50}a^{3}-\frac{61\!\cdots\!83}{25\!\cdots\!50}a^{2}+\frac{56\!\cdots\!28}{65\!\cdots\!75}a-\frac{18\!\cdots\!71}{84\!\cdots\!25}$, $\frac{96\!\cdots\!98}{12\!\cdots\!25}a^{31}-\frac{40\!\cdots\!47}{10\!\cdots\!00}a^{30}-\frac{27\!\cdots\!11}{50\!\cdots\!00}a^{29}+\frac{24\!\cdots\!29}{10\!\cdots\!00}a^{28}+\frac{10\!\cdots\!31}{50\!\cdots\!00}a^{27}-\frac{62\!\cdots\!71}{12\!\cdots\!25}a^{26}-\frac{68\!\cdots\!81}{50\!\cdots\!00}a^{25}+\frac{30\!\cdots\!67}{10\!\cdots\!00}a^{24}+\frac{23\!\cdots\!11}{25\!\cdots\!45}a^{23}-\frac{19\!\cdots\!87}{12\!\cdots\!25}a^{22}-\frac{19\!\cdots\!43}{26\!\cdots\!10}a^{21}+\frac{29\!\cdots\!93}{20\!\cdots\!60}a^{20}+\frac{36\!\cdots\!04}{12\!\cdots\!25}a^{19}-\frac{10\!\cdots\!57}{10\!\cdots\!00}a^{18}+\frac{99\!\cdots\!09}{26\!\cdots\!00}a^{17}+\frac{62\!\cdots\!57}{23\!\cdots\!96}a^{16}-\frac{53\!\cdots\!26}{12\!\cdots\!25}a^{15}-\frac{13\!\cdots\!33}{10\!\cdots\!00}a^{14}+\frac{72\!\cdots\!17}{50\!\cdots\!00}a^{13}-\frac{91\!\cdots\!43}{50\!\cdots\!00}a^{12}+\frac{26\!\cdots\!49}{50\!\cdots\!00}a^{11}+\frac{24\!\cdots\!23}{12\!\cdots\!25}a^{10}-\frac{27\!\cdots\!04}{12\!\cdots\!25}a^{9}+\frac{75\!\cdots\!33}{12\!\cdots\!25}a^{8}+\frac{65\!\cdots\!29}{25\!\cdots\!50}a^{7}-\frac{26\!\cdots\!91}{10\!\cdots\!00}a^{6}+\frac{18\!\cdots\!79}{25\!\cdots\!45}a^{5}+\frac{39\!\cdots\!73}{25\!\cdots\!50}a^{4}-\frac{32\!\cdots\!89}{25\!\cdots\!50}a^{3}+\frac{49\!\cdots\!08}{12\!\cdots\!25}a^{2}+\frac{68\!\cdots\!28}{65\!\cdots\!75}a-\frac{53\!\cdots\!92}{84\!\cdots\!25}$, $\frac{23\!\cdots\!29}{29\!\cdots\!00}a^{31}-\frac{46\!\cdots\!61}{11\!\cdots\!00}a^{30}-\frac{19\!\cdots\!17}{29\!\cdots\!70}a^{29}+\frac{59\!\cdots\!79}{23\!\cdots\!60}a^{28}+\frac{12\!\cdots\!89}{58\!\cdots\!40}a^{27}-\frac{71\!\cdots\!73}{14\!\cdots\!50}a^{26}-\frac{18\!\cdots\!49}{11\!\cdots\!80}a^{25}+\frac{71\!\cdots\!49}{23\!\cdots\!60}a^{24}+\frac{64\!\cdots\!21}{58\!\cdots\!00}a^{23}-\frac{10\!\cdots\!08}{73\!\cdots\!25}a^{22}-\frac{13\!\cdots\!43}{15\!\cdots\!00}a^{21}+\frac{16\!\cdots\!63}{11\!\cdots\!00}a^{20}+\frac{21\!\cdots\!87}{58\!\cdots\!00}a^{19}-\frac{11\!\cdots\!43}{11\!\cdots\!00}a^{18}-\frac{55\!\cdots\!58}{38\!\cdots\!75}a^{17}+\frac{35\!\cdots\!87}{11\!\cdots\!00}a^{16}-\frac{79\!\cdots\!53}{23\!\cdots\!96}a^{15}-\frac{38\!\cdots\!03}{11\!\cdots\!00}a^{14}+\frac{41\!\cdots\!38}{29\!\cdots\!37}a^{13}-\frac{77\!\cdots\!71}{58\!\cdots\!00}a^{12}-\frac{34\!\cdots\!17}{58\!\cdots\!00}a^{11}+\frac{26\!\cdots\!33}{14\!\cdots\!50}a^{10}-\frac{40\!\cdots\!09}{29\!\cdots\!00}a^{9}+\frac{95\!\cdots\!41}{58\!\cdots\!40}a^{8}+\frac{64\!\cdots\!89}{29\!\cdots\!00}a^{7}-\frac{24\!\cdots\!69}{11\!\cdots\!00}a^{6}+\frac{18\!\cdots\!33}{58\!\cdots\!00}a^{5}+\frac{19\!\cdots\!01}{14\!\cdots\!50}a^{4}-\frac{50\!\cdots\!07}{58\!\cdots\!40}a^{3}+\frac{14\!\cdots\!12}{73\!\cdots\!25}a^{2}+\frac{56\!\cdots\!47}{77\!\cdots\!50}a-\frac{68\!\cdots\!21}{98\!\cdots\!50}$, $\frac{71\!\cdots\!27}{58\!\cdots\!00}a^{31}-\frac{70\!\cdots\!97}{11\!\cdots\!00}a^{30}-\frac{30\!\cdots\!79}{29\!\cdots\!00}a^{29}+\frac{86\!\cdots\!03}{23\!\cdots\!60}a^{28}+\frac{19\!\cdots\!01}{58\!\cdots\!00}a^{27}-\frac{52\!\cdots\!81}{73\!\cdots\!25}a^{26}-\frac{17\!\cdots\!52}{73\!\cdots\!25}a^{25}+\frac{50\!\cdots\!97}{11\!\cdots\!00}a^{24}+\frac{23\!\cdots\!37}{14\!\cdots\!50}a^{23}-\frac{30\!\cdots\!39}{14\!\cdots\!50}a^{22}-\frac{78\!\cdots\!09}{61\!\cdots\!20}a^{21}+\frac{23\!\cdots\!91}{11\!\cdots\!00}a^{20}+\frac{31\!\cdots\!23}{58\!\cdots\!00}a^{19}-\frac{17\!\cdots\!87}{11\!\cdots\!00}a^{18}+\frac{10\!\cdots\!09}{15\!\cdots\!00}a^{17}+\frac{51\!\cdots\!03}{11\!\cdots\!00}a^{16}-\frac{12\!\cdots\!35}{23\!\cdots\!96}a^{15}-\frac{10\!\cdots\!71}{23\!\cdots\!60}a^{14}+\frac{24\!\cdots\!39}{11\!\cdots\!80}a^{13}-\frac{12\!\cdots\!71}{58\!\cdots\!00}a^{12}+\frac{75\!\cdots\!07}{58\!\cdots\!00}a^{11}+\frac{83\!\cdots\!81}{29\!\cdots\!00}a^{10}-\frac{65\!\cdots\!93}{29\!\cdots\!00}a^{9}+\frac{94\!\cdots\!47}{29\!\cdots\!00}a^{8}+\frac{20\!\cdots\!71}{58\!\cdots\!00}a^{7}-\frac{33\!\cdots\!77}{11\!\cdots\!00}a^{6}+\frac{16\!\cdots\!67}{29\!\cdots\!00}a^{5}+\frac{60\!\cdots\!89}{29\!\cdots\!37}a^{4}-\frac{15\!\cdots\!89}{14\!\cdots\!50}a^{3}+\frac{32\!\cdots\!12}{73\!\cdots\!25}a^{2}+\frac{47\!\cdots\!89}{38\!\cdots\!75}a-\frac{66\!\cdots\!89}{99\!\cdots\!50}$, $\frac{30\!\cdots\!92}{25\!\cdots\!45}a^{31}-\frac{30\!\cdots\!77}{50\!\cdots\!00}a^{30}-\frac{51\!\cdots\!11}{50\!\cdots\!00}a^{29}+\frac{38\!\cdots\!83}{10\!\cdots\!00}a^{28}+\frac{41\!\cdots\!17}{12\!\cdots\!25}a^{27}-\frac{73\!\cdots\!49}{10\!\cdots\!00}a^{26}-\frac{47\!\cdots\!15}{20\!\cdots\!16}a^{25}+\frac{23\!\cdots\!67}{50\!\cdots\!90}a^{24}+\frac{20\!\cdots\!86}{12\!\cdots\!25}a^{23}-\frac{22\!\cdots\!37}{10\!\cdots\!00}a^{22}-\frac{16\!\cdots\!23}{13\!\cdots\!55}a^{21}+\frac{53\!\cdots\!23}{25\!\cdots\!45}a^{20}+\frac{27\!\cdots\!29}{50\!\cdots\!00}a^{19}-\frac{15\!\cdots\!49}{10\!\cdots\!00}a^{18}+\frac{18\!\cdots\!13}{26\!\cdots\!00}a^{17}+\frac{27\!\cdots\!27}{58\!\cdots\!00}a^{16}-\frac{56\!\cdots\!53}{10\!\cdots\!58}a^{15}-\frac{49\!\cdots\!19}{10\!\cdots\!00}a^{14}+\frac{11\!\cdots\!47}{50\!\cdots\!00}a^{13}-\frac{21\!\cdots\!71}{10\!\cdots\!00}a^{12}-\frac{23\!\cdots\!83}{10\!\cdots\!80}a^{11}+\frac{83\!\cdots\!33}{25\!\cdots\!50}a^{10}-\frac{11\!\cdots\!73}{50\!\cdots\!00}a^{9}-\frac{10\!\cdots\!57}{25\!\cdots\!50}a^{8}+\frac{51\!\cdots\!91}{12\!\cdots\!25}a^{7}-\frac{16\!\cdots\!83}{50\!\cdots\!00}a^{6}+\frac{57\!\cdots\!59}{50\!\cdots\!00}a^{5}+\frac{26\!\cdots\!61}{10\!\cdots\!00}a^{4}-\frac{17\!\cdots\!12}{12\!\cdots\!25}a^{3}-\frac{65\!\cdots\!93}{50\!\cdots\!00}a^{2}+\frac{88\!\cdots\!49}{65\!\cdots\!75}a-\frac{18\!\cdots\!99}{16\!\cdots\!50}$, $\frac{17\!\cdots\!77}{20\!\cdots\!00}a^{31}-\frac{90\!\cdots\!29}{20\!\cdots\!00}a^{30}-\frac{11\!\cdots\!41}{20\!\cdots\!00}a^{29}+\frac{52\!\cdots\!87}{20\!\cdots\!00}a^{28}+\frac{88\!\cdots\!49}{40\!\cdots\!32}a^{27}-\frac{56\!\cdots\!19}{10\!\cdots\!00}a^{26}-\frac{27\!\cdots\!71}{20\!\cdots\!00}a^{25}+\frac{71\!\cdots\!03}{20\!\cdots\!00}a^{24}+\frac{44\!\cdots\!67}{50\!\cdots\!90}a^{23}-\frac{23\!\cdots\!33}{12\!\cdots\!25}a^{22}-\frac{80\!\cdots\!69}{10\!\cdots\!00}a^{21}+\frac{35\!\cdots\!09}{20\!\cdots\!00}a^{20}+\frac{53\!\cdots\!27}{20\!\cdots\!00}a^{19}-\frac{24\!\cdots\!99}{20\!\cdots\!00}a^{18}+\frac{75\!\cdots\!97}{10\!\cdots\!00}a^{17}+\frac{36\!\cdots\!81}{11\!\cdots\!00}a^{16}-\frac{11\!\cdots\!97}{20\!\cdots\!00}a^{15}-\frac{29\!\cdots\!43}{40\!\cdots\!20}a^{14}+\frac{42\!\cdots\!41}{25\!\cdots\!50}a^{13}-\frac{58\!\cdots\!31}{25\!\cdots\!45}a^{12}+\frac{95\!\cdots\!27}{10\!\cdots\!00}a^{11}+\frac{67\!\cdots\!47}{25\!\cdots\!45}a^{10}-\frac{73\!\cdots\!21}{25\!\cdots\!45}a^{9}+\frac{90\!\cdots\!39}{50\!\cdots\!00}a^{8}+\frac{53\!\cdots\!61}{20\!\cdots\!00}a^{7}-\frac{62\!\cdots\!71}{20\!\cdots\!00}a^{6}+\frac{68\!\cdots\!89}{50\!\cdots\!00}a^{5}+\frac{97\!\cdots\!89}{50\!\cdots\!00}a^{4}-\frac{41\!\cdots\!39}{25\!\cdots\!50}a^{3}+\frac{28\!\cdots\!47}{25\!\cdots\!50}a^{2}+\frac{11\!\cdots\!17}{13\!\cdots\!50}a-\frac{11\!\cdots\!91}{16\!\cdots\!50}$, $\frac{64\!\cdots\!05}{20\!\cdots\!16}a^{31}-\frac{23\!\cdots\!13}{50\!\cdots\!00}a^{30}+\frac{72\!\cdots\!23}{50\!\cdots\!00}a^{29}+\frac{70\!\cdots\!03}{25\!\cdots\!50}a^{28}-\frac{99\!\cdots\!42}{25\!\cdots\!45}a^{27}-\frac{48\!\cdots\!49}{50\!\cdots\!00}a^{26}+\frac{93\!\cdots\!31}{50\!\cdots\!00}a^{25}+\frac{32\!\cdots\!31}{50\!\cdots\!00}a^{24}-\frac{33\!\cdots\!11}{25\!\cdots\!50}a^{23}-\frac{21\!\cdots\!07}{50\!\cdots\!00}a^{22}+\frac{17\!\cdots\!91}{26\!\cdots\!00}a^{21}+\frac{18\!\cdots\!79}{50\!\cdots\!00}a^{20}-\frac{34\!\cdots\!01}{50\!\cdots\!00}a^{19}-\frac{41\!\cdots\!53}{25\!\cdots\!50}a^{18}+\frac{29\!\cdots\!01}{52\!\cdots\!20}a^{17}-\frac{12\!\cdots\!83}{14\!\cdots\!50}a^{16}-\frac{87\!\cdots\!23}{50\!\cdots\!00}a^{15}+\frac{11\!\cdots\!07}{50\!\cdots\!90}a^{14}+\frac{23\!\cdots\!36}{12\!\cdots\!25}a^{13}-\frac{44\!\cdots\!03}{50\!\cdots\!00}a^{12}+\frac{10\!\cdots\!76}{12\!\cdots\!25}a^{11}+\frac{42\!\cdots\!78}{12\!\cdots\!25}a^{10}-\frac{41\!\cdots\!81}{25\!\cdots\!50}a^{9}+\frac{68\!\cdots\!39}{50\!\cdots\!90}a^{8}+\frac{54\!\cdots\!77}{50\!\cdots\!00}a^{7}-\frac{67\!\cdots\!33}{50\!\cdots\!00}a^{6}+\frac{14\!\cdots\!62}{12\!\cdots\!25}a^{5}-\frac{72\!\cdots\!19}{50\!\cdots\!00}a^{4}-\frac{10\!\cdots\!41}{12\!\cdots\!25}a^{3}+\frac{86\!\cdots\!54}{12\!\cdots\!25}a^{2}-\frac{23\!\cdots\!89}{65\!\cdots\!75}a-\frac{16\!\cdots\!82}{84\!\cdots\!25}$, $\frac{38\!\cdots\!13}{40\!\cdots\!20}a^{31}-\frac{44\!\cdots\!81}{10\!\cdots\!00}a^{30}-\frac{22\!\cdots\!71}{20\!\cdots\!00}a^{29}+\frac{65\!\cdots\!27}{20\!\cdots\!60}a^{28}+\frac{36\!\cdots\!01}{12\!\cdots\!25}a^{27}-\frac{52\!\cdots\!97}{10\!\cdots\!00}a^{26}-\frac{49\!\cdots\!37}{20\!\cdots\!00}a^{25}+\frac{17\!\cdots\!31}{50\!\cdots\!00}a^{24}+\frac{87\!\cdots\!11}{50\!\cdots\!00}a^{23}-\frac{41\!\cdots\!03}{25\!\cdots\!50}a^{22}-\frac{13\!\cdots\!97}{10\!\cdots\!00}a^{21}+\frac{18\!\cdots\!14}{12\!\cdots\!25}a^{20}+\frac{13\!\cdots\!59}{20\!\cdots\!00}a^{19}-\frac{12\!\cdots\!43}{10\!\cdots\!00}a^{18}-\frac{12\!\cdots\!77}{10\!\cdots\!00}a^{17}+\frac{74\!\cdots\!39}{14\!\cdots\!50}a^{16}-\frac{14\!\cdots\!57}{80\!\cdots\!64}a^{15}-\frac{10\!\cdots\!33}{10\!\cdots\!00}a^{14}+\frac{37\!\cdots\!03}{20\!\cdots\!60}a^{13}+\frac{61\!\cdots\!79}{10\!\cdots\!00}a^{12}-\frac{13\!\cdots\!11}{50\!\cdots\!00}a^{11}+\frac{13\!\cdots\!29}{50\!\cdots\!00}a^{10}+\frac{65\!\cdots\!93}{50\!\cdots\!00}a^{9}-\frac{42\!\cdots\!46}{12\!\cdots\!25}a^{8}+\frac{46\!\cdots\!61}{20\!\cdots\!00}a^{7}+\frac{15\!\cdots\!04}{12\!\cdots\!25}a^{6}-\frac{15\!\cdots\!31}{50\!\cdots\!00}a^{5}+\frac{10\!\cdots\!81}{50\!\cdots\!00}a^{4}+\frac{24\!\cdots\!02}{12\!\cdots\!25}a^{3}-\frac{23\!\cdots\!53}{12\!\cdots\!25}a^{2}-\frac{12\!\cdots\!27}{69\!\cdots\!50}a+\frac{74\!\cdots\!12}{84\!\cdots\!25}$, $\frac{67\!\cdots\!51}{50\!\cdots\!00}a^{31}-\frac{73\!\cdots\!19}{10\!\cdots\!00}a^{30}-\frac{10\!\cdots\!81}{10\!\cdots\!00}a^{29}+\frac{11\!\cdots\!27}{20\!\cdots\!60}a^{28}+\frac{36\!\cdots\!91}{10\!\cdots\!00}a^{27}-\frac{10\!\cdots\!73}{10\!\cdots\!80}a^{26}-\frac{13\!\cdots\!41}{50\!\cdots\!00}a^{25}+\frac{72\!\cdots\!33}{10\!\cdots\!00}a^{24}+\frac{19\!\cdots\!21}{10\!\cdots\!00}a^{23}-\frac{49\!\cdots\!59}{12\!\cdots\!25}a^{22}-\frac{20\!\cdots\!49}{13\!\cdots\!50}a^{21}+\frac{33\!\cdots\!21}{10\!\cdots\!00}a^{20}+\frac{68\!\cdots\!93}{10\!\cdots\!00}a^{19}-\frac{23\!\cdots\!21}{10\!\cdots\!00}a^{18}+\frac{25\!\cdots\!29}{52\!\cdots\!00}a^{17}+\frac{43\!\cdots\!59}{58\!\cdots\!00}a^{16}-\frac{16\!\cdots\!29}{20\!\cdots\!60}a^{15}-\frac{18\!\cdots\!37}{20\!\cdots\!60}a^{14}+\frac{34\!\cdots\!29}{10\!\cdots\!00}a^{13}-\frac{63\!\cdots\!53}{25\!\cdots\!45}a^{12}-\frac{10\!\cdots\!17}{50\!\cdots\!00}a^{11}+\frac{59\!\cdots\!81}{10\!\cdots\!80}a^{10}-\frac{81\!\cdots\!23}{25\!\cdots\!50}a^{9}-\frac{49\!\cdots\!43}{25\!\cdots\!50}a^{8}+\frac{24\!\cdots\!07}{50\!\cdots\!00}a^{7}-\frac{31\!\cdots\!71}{10\!\cdots\!00}a^{6}-\frac{12\!\cdots\!37}{10\!\cdots\!00}a^{5}+\frac{48\!\cdots\!61}{12\!\cdots\!25}a^{4}-\frac{46\!\cdots\!31}{50\!\cdots\!00}a^{3}-\frac{32\!\cdots\!71}{25\!\cdots\!50}a^{2}+\frac{53\!\cdots\!53}{13\!\cdots\!50}a+\frac{43\!\cdots\!37}{84\!\cdots\!25}$, $\frac{10\!\cdots\!59}{20\!\cdots\!00}a^{31}-\frac{10\!\cdots\!63}{40\!\cdots\!20}a^{30}-\frac{82\!\cdots\!53}{20\!\cdots\!00}a^{29}+\frac{32\!\cdots\!83}{20\!\cdots\!00}a^{28}+\frac{68\!\cdots\!59}{50\!\cdots\!00}a^{27}-\frac{31\!\cdots\!69}{10\!\cdots\!80}a^{26}-\frac{19\!\cdots\!37}{20\!\cdots\!00}a^{25}+\frac{78\!\cdots\!01}{40\!\cdots\!20}a^{24}+\frac{68\!\cdots\!39}{10\!\cdots\!00}a^{23}-\frac{19\!\cdots\!59}{20\!\cdots\!60}a^{22}-\frac{22\!\cdots\!39}{42\!\cdots\!56}a^{21}+\frac{17\!\cdots\!43}{20\!\cdots\!00}a^{20}+\frac{45\!\cdots\!59}{20\!\cdots\!00}a^{19}-\frac{13\!\cdots\!51}{20\!\cdots\!00}a^{18}+\frac{24\!\cdots\!41}{10\!\cdots\!00}a^{17}+\frac{22\!\cdots\!17}{11\!\cdots\!00}a^{16}-\frac{45\!\cdots\!37}{20\!\cdots\!00}a^{15}-\frac{36\!\cdots\!91}{20\!\cdots\!00}a^{14}+\frac{89\!\cdots\!47}{10\!\cdots\!00}a^{13}-\frac{18\!\cdots\!27}{20\!\cdots\!60}a^{12}+\frac{79\!\cdots\!47}{10\!\cdots\!00}a^{11}+\frac{60\!\cdots\!81}{50\!\cdots\!00}a^{10}-\frac{64\!\cdots\!57}{50\!\cdots\!00}a^{9}+\frac{33\!\cdots\!97}{50\!\cdots\!00}a^{8}+\frac{18\!\cdots\!83}{20\!\cdots\!00}a^{7}-\frac{30\!\cdots\!33}{20\!\cdots\!00}a^{6}+\frac{74\!\cdots\!13}{10\!\cdots\!00}a^{5}+\frac{96\!\cdots\!49}{20\!\cdots\!60}a^{4}-\frac{32\!\cdots\!63}{50\!\cdots\!00}a^{3}+\frac{25\!\cdots\!73}{50\!\cdots\!00}a^{2}+\frac{19\!\cdots\!08}{13\!\cdots\!55}a-\frac{29\!\cdots\!79}{84\!\cdots\!25}$, $\frac{13\!\cdots\!73}{50\!\cdots\!00}a^{31}-\frac{45\!\cdots\!57}{20\!\cdots\!00}a^{30}+\frac{46\!\cdots\!88}{12\!\cdots\!25}a^{29}+\frac{15\!\cdots\!01}{20\!\cdots\!00}a^{28}+\frac{10\!\cdots\!23}{25\!\cdots\!50}a^{27}-\frac{73\!\cdots\!11}{20\!\cdots\!60}a^{26}+\frac{36\!\cdots\!69}{10\!\cdots\!00}a^{25}+\frac{65\!\cdots\!49}{40\!\cdots\!20}a^{24}-\frac{15\!\cdots\!41}{10\!\cdots\!00}a^{23}-\frac{10\!\cdots\!27}{10\!\cdots\!00}a^{22}+\frac{22\!\cdots\!27}{26\!\cdots\!00}a^{21}+\frac{21\!\cdots\!03}{20\!\cdots\!00}a^{20}-\frac{15\!\cdots\!97}{10\!\cdots\!00}a^{19}-\frac{80\!\cdots\!73}{20\!\cdots\!00}a^{18}+\frac{19\!\cdots\!22}{13\!\cdots\!55}a^{17}-\frac{13\!\cdots\!91}{11\!\cdots\!00}a^{16}-\frac{26\!\cdots\!23}{10\!\cdots\!00}a^{15}+\frac{13\!\cdots\!11}{20\!\cdots\!00}a^{14}-\frac{11\!\cdots\!53}{12\!\cdots\!25}a^{13}-\frac{45\!\cdots\!11}{25\!\cdots\!50}a^{12}+\frac{37\!\cdots\!01}{10\!\cdots\!00}a^{11}-\frac{93\!\cdots\!27}{25\!\cdots\!45}a^{10}+\frac{16\!\cdots\!38}{12\!\cdots\!25}a^{9}+\frac{12\!\cdots\!93}{10\!\cdots\!80}a^{8}-\frac{32\!\cdots\!47}{20\!\cdots\!16}a^{7}-\frac{39\!\cdots\!01}{20\!\cdots\!00}a^{6}+\frac{21\!\cdots\!69}{10\!\cdots\!00}a^{5}-\frac{23\!\cdots\!77}{10\!\cdots\!00}a^{4}+\frac{68\!\cdots\!39}{50\!\cdots\!00}a^{3}-\frac{16\!\cdots\!39}{50\!\cdots\!00}a^{2}-\frac{14\!\cdots\!77}{13\!\cdots\!50}a+\frac{16\!\cdots\!61}{16\!\cdots\!45}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 72117810971857.08 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 72117810971857.08 \cdot 1728}{6\cdot\sqrt{7811497343330649377718034300042226077532160000000000000000}}\cr\approx \mathstrut & 1.38658268516890 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 6*x^31 - 3*x^30 + 38*x^29 + 240*x^28 - 870*x^27 - 1253*x^26 + 5504*x^25 + 8960*x^24 - 30532*x^23 - 82591*x^22 + 273588*x^21 + 232111*x^20 - 1662294*x^19 + 1506913*x^18 + 3228344*x^17 - 8242121*x^16 + 2035750*x^15 + 20473926*x^14 - 37183070*x^13 + 23899872*x^12 + 19231684*x^11 - 44051780*x^10 + 29086832*x^9 + 22770705*x^8 - 53249356*x^7 + 38434576*x^6 + 9011088*x^5 - 26789548*x^4 + 18764896*x^3 + 5552960*x^2 - 14383456*x + 9709456);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-10}) \), 4.0.142400.5, 4.4.1281600.4, 4.0.20025.1, 4.4.2225.1, \(\Q(\sqrt{6}, \sqrt{-10})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), 8.8.3670274560000.1, 8.0.297292239360000.1, 8.8.72581113125.1, 8.0.896063125.1, 8.0.207360000.2, 8.0.1642498560000.34, 8.0.401000625.1, 8.0.1642498560000.13, 8.8.1642498560000.3, 8.0.20277760000.2, 8.0.1642498560000.3, 16.0.2697801519602073600000000.2, 16.0.88382675583683533209600000000.6, 16.0.5268017982464047265625.1, 16.16.88382675583683533209600000000.1, 16.0.88382675583683533209600000000.4, 16.0.88382675583683533209600000000.2, 16.0.13470915345783193600000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.8.0.1}{8} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{16}$ ${\href{/padicField/23.8.0.1}{8} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.8.12.2$x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.2$x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(89\) Copy content Toggle raw display 89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.2.1$x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} + 4 x^{2} + 72 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
\(181\) Copy content Toggle raw display 181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.4.2.1$x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
181.4.2.1$x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$