Properties

Label 32.0.779...216.1
Degree $32$
Signature $[0, 16]$
Discriminant $7.790\times 10^{48}$
Root discriminant \(33.72\)
Ramified primes $2,3,11,17$
Class number $24$ (GRH)
Class group [2, 12] (GRH)
Galois group $C_2\times D_4^2$ (as 32T1016)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016)
 
gp: K = bnfinit(y^32 - 16*y^31 + 156*y^30 - 1096*y^29 + 6134*y^28 - 28580*y^27 + 114266*y^26 - 399684*y^25 + 1239490*y^24 - 3440780*y^23 + 8605010*y^22 - 19473044*y^21 + 39982438*y^20 - 74587072*y^19 + 126485556*y^18 - 194983784*y^17 + 273242634*y^16 - 348358772*y^15 + 405080242*y^14 - 431986068*y^13 + 426399702*y^12 - 394223580*y^11 + 344722538*y^10 - 285681476*y^9 + 222647745*y^8 - 160135088*y^7 + 103163456*y^6 - 57484000*y^5 + 26721528*y^4 - 9914240*y^3 + 2744800*y^2 - 506176*y + 48016, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016)
 

\( x^{32} - 16 x^{31} + 156 x^{30} - 1096 x^{29} + 6134 x^{28} - 28580 x^{27} + 114266 x^{26} + \cdots + 48016 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7790452574060543254749837160138952789467349385216\) \(\medspace = 2^{64}\cdot 3^{24}\cdot 11^{8}\cdot 17^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(33.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}3^{3/4}11^{1/2}17^{1/2}\approx 124.68716072129577$
Ramified primes:   \(2\), \(3\), \(11\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{18}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{22}-\frac{1}{4}a^{18}-\frac{1}{4}a^{14}+\frac{1}{4}a^{10}-\frac{1}{2}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{104}a^{23}-\frac{7}{104}a^{22}-\frac{5}{104}a^{21}+\frac{1}{104}a^{20}+\frac{1}{26}a^{19}+\frac{7}{52}a^{18}+\frac{11}{52}a^{17}-\frac{5}{52}a^{16}-\frac{21}{104}a^{15}-\frac{21}{104}a^{14}-\frac{11}{104}a^{13}-\frac{5}{104}a^{12}+\frac{1}{52}a^{11}-\frac{6}{13}a^{10}-\frac{19}{52}a^{9}+\frac{7}{52}a^{8}-\frac{5}{104}a^{7}-\frac{25}{104}a^{6}-\frac{1}{104}a^{5}+\frac{41}{104}a^{4}-\frac{3}{26}a^{3}+\frac{21}{52}a^{2}-\frac{11}{26}a+\frac{5}{13}$, $\frac{1}{6448}a^{24}-\frac{3}{1612}a^{23}-\frac{89}{3224}a^{22}-\frac{7}{124}a^{21}-\frac{547}{6448}a^{20}+\frac{239}{1612}a^{19}+\frac{67}{3224}a^{18}-\frac{121}{1612}a^{17}+\frac{81}{6448}a^{16}-\frac{369}{1612}a^{15}+\frac{567}{3224}a^{14}+\frac{357}{1612}a^{13}+\frac{417}{6448}a^{12}+\frac{76}{403}a^{11}+\frac{373}{806}a^{10}+\frac{185}{403}a^{9}+\frac{1849}{6448}a^{8}-\frac{1}{31}a^{7}+\frac{291}{1612}a^{6}+\frac{24}{403}a^{5}-\frac{971}{6448}a^{4}-\frac{23}{806}a^{3}+\frac{43}{806}a^{2}-\frac{1}{31}a-\frac{297}{1612}$, $\frac{1}{6448}a^{25}-\frac{3}{1612}a^{23}+\frac{83}{3224}a^{22}-\frac{17}{6448}a^{21}-\frac{231}{3224}a^{20}-\frac{25}{3224}a^{19}-\frac{123}{806}a^{18}+\frac{1093}{6448}a^{17}-\frac{95}{1612}a^{16}-\frac{5}{62}a^{15}+\frac{233}{3224}a^{14}+\frac{1247}{6448}a^{13}-\frac{83}{3224}a^{12}-\frac{287}{1612}a^{11}-\frac{119}{403}a^{10}-\frac{203}{6448}a^{9}-\frac{337}{806}a^{8}-\frac{1441}{3224}a^{7}-\frac{729}{3224}a^{6}-\frac{3121}{6448}a^{5}-\frac{369}{3224}a^{4}-\frac{295}{806}a^{3}-\frac{601}{1612}a^{2}+\frac{505}{1612}a-\frac{116}{403}$, $\frac{1}{12896}a^{26}-\frac{1}{12896}a^{25}+\frac{17}{6448}a^{23}+\frac{905}{12896}a^{22}+\frac{23}{12896}a^{21}-\frac{329}{3224}a^{20}-\frac{373}{6448}a^{19}+\frac{2073}{12896}a^{18}+\frac{2391}{12896}a^{17}-\frac{23}{124}a^{16}-\frac{303}{6448}a^{15}+\frac{1493}{12896}a^{14}-\frac{2009}{12896}a^{13}-\frac{407}{6448}a^{12}+\frac{319}{1612}a^{11}+\frac{3657}{12896}a^{10}-\frac{5661}{12896}a^{9}+\frac{1329}{6448}a^{8}-\frac{67}{806}a^{7}+\frac{2633}{12896}a^{6}-\frac{4293}{12896}a^{5}-\frac{2607}{6448}a^{4}-\frac{483}{1612}a^{3}-\frac{683}{3224}a^{2}+\frac{825}{3224}a+\frac{15}{52}$, $\frac{1}{12896}a^{27}-\frac{1}{12896}a^{25}-\frac{17}{12896}a^{23}+\frac{51}{1612}a^{22}-\frac{1441}{12896}a^{21}-\frac{237}{3224}a^{20}+\frac{2055}{12896}a^{19}+\frac{3}{248}a^{18}-\frac{657}{12896}a^{17}+\frac{45}{403}a^{16}+\frac{2339}{12896}a^{15}-\frac{189}{3224}a^{14}+\frac{2317}{12896}a^{13}-\frac{599}{3224}a^{12}+\frac{825}{12896}a^{11}+\frac{175}{3224}a^{10}+\frac{6221}{12896}a^{9}+\frac{431}{1612}a^{8}+\frac{2557}{12896}a^{7}-\frac{489}{1612}a^{6}+\frac{4593}{12896}a^{5}+\frac{869}{3224}a^{4}+\frac{783}{3224}a^{3}-\frac{123}{403}a^{2}-\frac{817}{3224}a+\frac{153}{806}$, $\frac{1}{25792}a^{28}-\frac{1}{25792}a^{26}+\frac{1}{25792}a^{24}+\frac{17}{6448}a^{23}+\frac{2671}{25792}a^{22}-\frac{27}{1612}a^{21}+\frac{1757}{25792}a^{20}+\frac{993}{6448}a^{19}-\frac{3205}{25792}a^{18}-\frac{111}{806}a^{17}+\frac{5037}{25792}a^{16}-\frac{84}{403}a^{15}-\frac{459}{25792}a^{14}-\frac{35}{806}a^{13}+\frac{5727}{25792}a^{12}-\frac{863}{6448}a^{11}+\frac{4629}{25792}a^{10}+\frac{213}{1612}a^{9}+\frac{1863}{25792}a^{8}+\frac{1465}{6448}a^{7}+\frac{2853}{25792}a^{6}-\frac{138}{403}a^{5}-\frac{1655}{12896}a^{4}+\frac{43}{1612}a^{3}+\frac{1847}{6448}a^{2}+\frac{5}{31}a+\frac{737}{3224}$, $\frac{1}{25792}a^{29}-\frac{1}{25792}a^{27}+\frac{1}{25792}a^{25}+\frac{15}{25792}a^{23}-\frac{339}{3224}a^{22}-\frac{1267}{25792}a^{21}-\frac{1}{26}a^{20}+\frac{1723}{25792}a^{19}+\frac{401}{3224}a^{18}+\frac{253}{25792}a^{17}-\frac{489}{6448}a^{16}+\frac{5173}{25792}a^{15}-\frac{665}{3224}a^{14}+\frac{4847}{25792}a^{13}-\frac{97}{1612}a^{12}-\frac{1179}{25792}a^{11}-\frac{441}{1612}a^{10}-\frac{3001}{25792}a^{9}+\frac{29}{62}a^{8}+\frac{8565}{25792}a^{7}-\frac{37}{806}a^{6}+\frac{3145}{12896}a^{5}-\frac{2789}{6448}a^{4}+\frac{883}{6448}a^{3}+\frac{81}{806}a^{2}+\frac{645}{3224}a-\frac{407}{1612}$, $\frac{1}{27\!\cdots\!52}a^{30}+\frac{413668346333483}{27\!\cdots\!52}a^{29}+\frac{437636904689185}{27\!\cdots\!52}a^{28}-\frac{652940747591199}{27\!\cdots\!52}a^{27}-\frac{427007964032757}{27\!\cdots\!52}a^{26}-\frac{178448333508561}{27\!\cdots\!52}a^{25}-\frac{6354824762865}{46\!\cdots\!28}a^{24}+\frac{66\!\cdots\!09}{27\!\cdots\!52}a^{23}+\frac{77\!\cdots\!61}{88\!\cdots\!92}a^{22}-\frac{23\!\cdots\!69}{27\!\cdots\!52}a^{21}-\frac{21\!\cdots\!87}{27\!\cdots\!52}a^{20}-\frac{63\!\cdots\!87}{27\!\cdots\!52}a^{19}+\frac{34\!\cdots\!19}{27\!\cdots\!52}a^{18}+\frac{12\!\cdots\!83}{27\!\cdots\!52}a^{17}+\frac{24\!\cdots\!15}{27\!\cdots\!52}a^{16}-\frac{60\!\cdots\!01}{27\!\cdots\!52}a^{15}+\frac{19\!\cdots\!17}{27\!\cdots\!52}a^{14}+\frac{27\!\cdots\!69}{27\!\cdots\!52}a^{13}-\frac{10\!\cdots\!71}{46\!\cdots\!28}a^{12}+\frac{66\!\cdots\!91}{27\!\cdots\!52}a^{11}+\frac{12\!\cdots\!73}{27\!\cdots\!52}a^{10}-\frac{11\!\cdots\!95}{27\!\cdots\!52}a^{9}-\frac{12\!\cdots\!53}{27\!\cdots\!52}a^{8}-\frac{688803063213325}{60\!\cdots\!96}a^{7}+\frac{30\!\cdots\!51}{34\!\cdots\!44}a^{6}+\frac{38\!\cdots\!55}{13\!\cdots\!76}a^{5}+\frac{89\!\cdots\!31}{42\!\cdots\!18}a^{4}+\frac{57\!\cdots\!45}{68\!\cdots\!88}a^{3}-\frac{10\!\cdots\!45}{13\!\cdots\!44}a^{2}-\frac{36\!\cdots\!77}{26\!\cdots\!88}a-\frac{10\!\cdots\!95}{17\!\cdots\!72}$, $\frac{1}{46\!\cdots\!52}a^{31}-\frac{66\!\cdots\!89}{46\!\cdots\!52}a^{30}+\frac{50\!\cdots\!51}{46\!\cdots\!52}a^{29}-\frac{51\!\cdots\!79}{78\!\cdots\!28}a^{28}-\frac{10\!\cdots\!87}{46\!\cdots\!52}a^{27}+\frac{49\!\cdots\!49}{46\!\cdots\!52}a^{26}-\frac{78\!\cdots\!85}{46\!\cdots\!52}a^{25}+\frac{47\!\cdots\!35}{46\!\cdots\!52}a^{24}-\frac{20\!\cdots\!31}{46\!\cdots\!52}a^{23}+\frac{19\!\cdots\!69}{46\!\cdots\!52}a^{22}+\frac{30\!\cdots\!07}{35\!\cdots\!04}a^{21}-\frac{37\!\cdots\!73}{46\!\cdots\!52}a^{20}+\frac{98\!\cdots\!25}{46\!\cdots\!52}a^{19}-\frac{72\!\cdots\!95}{46\!\cdots\!52}a^{18}-\frac{69\!\cdots\!87}{46\!\cdots\!52}a^{17}+\frac{32\!\cdots\!43}{11\!\cdots\!84}a^{16}+\frac{21\!\cdots\!95}{46\!\cdots\!52}a^{15}+\frac{23\!\cdots\!79}{46\!\cdots\!52}a^{14}-\frac{27\!\cdots\!75}{46\!\cdots\!52}a^{13}-\frac{43\!\cdots\!39}{46\!\cdots\!52}a^{12}+\frac{85\!\cdots\!11}{35\!\cdots\!04}a^{11}+\frac{19\!\cdots\!99}{46\!\cdots\!52}a^{10}-\frac{14\!\cdots\!51}{46\!\cdots\!52}a^{9}+\frac{13\!\cdots\!13}{46\!\cdots\!52}a^{8}-\frac{91\!\cdots\!47}{23\!\cdots\!76}a^{7}+\frac{23\!\cdots\!85}{11\!\cdots\!88}a^{6}+\frac{82\!\cdots\!29}{28\!\cdots\!72}a^{5}-\frac{24\!\cdots\!37}{14\!\cdots\!36}a^{4}+\frac{53\!\cdots\!57}{57\!\cdots\!44}a^{3}+\frac{72\!\cdots\!65}{85\!\cdots\!44}a^{2}-\frac{40\!\cdots\!03}{93\!\cdots\!12}a+\frac{24\!\cdots\!19}{28\!\cdots\!72}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{5218015018014496867534361723302710370923454205}{6350164678325258493164145180012037041076628238752} a^{31} - \frac{315745854338833719442733331483793503445726527117}{25400658713301033972656580720048148164306512955008} a^{30} + \frac{2980839981596353439395188998874682480050899123241}{25400658713301033972656580720048148164306512955008} a^{29} - \frac{20278164767916066284221199433129250014311497513351}{25400658713301033972656580720048148164306512955008} a^{28} + \frac{110361102192611475372100436350751609753232597646863}{25400658713301033972656580720048148164306512955008} a^{27} - \frac{500368542207551763651134315120025412623398282148721}{25400658713301033972656580720048148164306512955008} a^{26} + \frac{1948994937006334771796687763686134111611506802477181}{25400658713301033972656580720048148164306512955008} a^{25} - \frac{214318720213926845621605882174484320171865483474501}{819376087525839805569567120001553166590532675968} a^{24} + \frac{20080323774413916833015730228294615126964501823445183}{25400658713301033972656580720048148164306512955008} a^{23} - \frac{54311556605545172695716263244594753944889858521779085}{25400658713301033972656580720048148164306512955008} a^{22} + \frac{782520816517091853336753220880511614891382428012449}{150299755700006118181399885917444663694121378432} a^{21} - \frac{291087686222432488575742779217223434780578069343205079}{25400658713301033972656580720048148164306512955008} a^{20} + \frac{580500634204775427302519893957289010282073992750102427}{25400658713301033972656580720048148164306512955008} a^{19} - \frac{33869691622656727417571353741362378870185136633797443}{819376087525839805569567120001553166590532675968} a^{18} + \frac{1722751497339918996445720898167596194277132940001884357}{25400658713301033972656580720048148164306512955008} a^{17} - \frac{197198895622318792282727043162313477183518074465418529}{1953896824100079536358198516926780628023577919616} a^{16} + \frac{3459935954441455347295804134153297764889556404948663061}{25400658713301033972656580720048148164306512955008} a^{15} - \frac{4240280630114003287526895544424952122819982059318129807}{25400658713301033972656580720048148164306512955008} a^{14} + \frac{4736137601391150557004530954068128448094967987198888187}{25400658713301033972656580720048148164306512955008} a^{13} - \frac{4857187545656762532619572120523286879470223403206980001}{25400658713301033972656580720048148164306512955008} a^{12} + \frac{356010074349391177063678588201422947880280226305115561}{1953896824100079536358198516926780628023577919616} a^{11} - \frac{4152306556979381305194473466956950698482303193598419207}{25400658713301033972656580720048148164306512955008} a^{10} + \frac{3533697003054614558621769212210639356146577124951674387}{25400658713301033972656580720048148164306512955008} a^{9} - \frac{2843480075467151158019891882860740640110502474058195009}{25400658713301033972656580720048148164306512955008} a^{8} + \frac{2134103279288069416474805017491267617438077086412289985}{25400658713301033972656580720048148164306512955008} a^{7} - \frac{726631963711313610143845507384798643892265410387898275}{12700329356650516986328290360024074082153256477504} a^{6} + \frac{431815038806499008060550352675790649263410083637225961}{12700329356650516986328290360024074082153256477504} a^{5} - \frac{107564903011568162950075090237039710879819387958732127}{6350164678325258493164145180012037041076628238752} a^{4} + \frac{42979004032676267715954153894812868818605172638662831}{6350164678325258493164145180012037041076628238752} a^{3} - \frac{37960575528666866688082203616434908985126601087639}{18787469462500764772674985739680582961765172304} a^{2} + \frac{1266337995317896992353826983637844073606627511371821}{3175082339162629246582072590006018520538314119376} a - \frac{16120194331840303759660323104265522360739299966987}{396885292395328655822759073750752315067289264922} \)  (order $24$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!91}{26\!\cdots\!36}a^{31}-\frac{45\!\cdots\!97}{68\!\cdots\!92}a^{30}+\frac{33\!\cdots\!21}{53\!\cdots\!72}a^{29}-\frac{45\!\cdots\!49}{10\!\cdots\!44}a^{28}+\frac{30\!\cdots\!35}{13\!\cdots\!68}a^{27}-\frac{11\!\cdots\!89}{10\!\cdots\!44}a^{26}+\frac{21\!\cdots\!47}{53\!\cdots\!72}a^{25}-\frac{14\!\cdots\!01}{10\!\cdots\!44}a^{24}+\frac{27\!\cdots\!97}{66\!\cdots\!34}a^{23}-\frac{92\!\cdots\!81}{82\!\cdots\!88}a^{22}+\frac{14\!\cdots\!35}{53\!\cdots\!72}a^{21}-\frac{64\!\cdots\!01}{10\!\cdots\!44}a^{20}+\frac{16\!\cdots\!79}{13\!\cdots\!68}a^{19}-\frac{74\!\cdots\!51}{34\!\cdots\!24}a^{18}+\frac{18\!\cdots\!65}{53\!\cdots\!72}a^{17}-\frac{56\!\cdots\!07}{10\!\cdots\!44}a^{16}+\frac{19\!\cdots\!79}{26\!\cdots\!36}a^{15}-\frac{93\!\cdots\!39}{10\!\cdots\!44}a^{14}+\frac{52\!\cdots\!71}{53\!\cdots\!72}a^{13}-\frac{10\!\cdots\!59}{10\!\cdots\!44}a^{12}+\frac{25\!\cdots\!23}{26\!\cdots\!36}a^{11}-\frac{91\!\cdots\!35}{10\!\cdots\!44}a^{10}+\frac{29\!\cdots\!79}{41\!\cdots\!44}a^{9}-\frac{62\!\cdots\!87}{10\!\cdots\!44}a^{8}+\frac{29\!\cdots\!19}{66\!\cdots\!34}a^{7}-\frac{15\!\cdots\!37}{53\!\cdots\!72}a^{6}+\frac{23\!\cdots\!17}{13\!\cdots\!68}a^{5}-\frac{23\!\cdots\!27}{26\!\cdots\!36}a^{4}+\frac{11\!\cdots\!85}{33\!\cdots\!17}a^{3}-\frac{11\!\cdots\!19}{10\!\cdots\!36}a^{2}+\frac{72\!\cdots\!56}{33\!\cdots\!17}a-\frac{77\!\cdots\!63}{33\!\cdots\!17}$, $\frac{12\!\cdots\!11}{23\!\cdots\!76}a^{31}-\frac{19\!\cdots\!15}{23\!\cdots\!76}a^{30}+\frac{91\!\cdots\!93}{11\!\cdots\!88}a^{29}-\frac{12\!\cdots\!25}{23\!\cdots\!76}a^{28}+\frac{42\!\cdots\!75}{14\!\cdots\!36}a^{27}-\frac{30\!\cdots\!13}{23\!\cdots\!76}a^{26}+\frac{59\!\cdots\!97}{11\!\cdots\!88}a^{25}-\frac{40\!\cdots\!05}{23\!\cdots\!76}a^{24}+\frac{30\!\cdots\!69}{57\!\cdots\!44}a^{23}-\frac{33\!\cdots\!73}{23\!\cdots\!76}a^{22}+\frac{31\!\cdots\!93}{88\!\cdots\!76}a^{21}-\frac{17\!\cdots\!29}{23\!\cdots\!76}a^{20}+\frac{44\!\cdots\!33}{28\!\cdots\!72}a^{19}-\frac{64\!\cdots\!57}{23\!\cdots\!76}a^{18}+\frac{26\!\cdots\!49}{57\!\cdots\!44}a^{17}-\frac{12\!\cdots\!19}{17\!\cdots\!52}a^{16}+\frac{13\!\cdots\!61}{14\!\cdots\!36}a^{15}-\frac{25\!\cdots\!75}{23\!\cdots\!76}a^{14}+\frac{14\!\cdots\!55}{11\!\cdots\!88}a^{13}-\frac{29\!\cdots\!15}{23\!\cdots\!76}a^{12}+\frac{33\!\cdots\!36}{27\!\cdots\!93}a^{11}-\frac{25\!\cdots\!83}{23\!\cdots\!76}a^{10}+\frac{10\!\cdots\!99}{11\!\cdots\!88}a^{9}-\frac{17\!\cdots\!03}{23\!\cdots\!76}a^{8}+\frac{13\!\cdots\!09}{23\!\cdots\!76}a^{7}-\frac{35\!\cdots\!59}{93\!\cdots\!12}a^{6}+\frac{26\!\cdots\!39}{11\!\cdots\!88}a^{5}-\frac{66\!\cdots\!01}{57\!\cdots\!44}a^{4}+\frac{26\!\cdots\!35}{57\!\cdots\!44}a^{3}-\frac{92\!\cdots\!61}{65\!\cdots\!88}a^{2}+\frac{82\!\cdots\!73}{28\!\cdots\!72}a-\frac{11\!\cdots\!01}{36\!\cdots\!09}$, $\frac{21\!\cdots\!15}{84\!\cdots\!12}a^{31}-\frac{83\!\cdots\!25}{21\!\cdots\!64}a^{30}+\frac{31\!\cdots\!13}{84\!\cdots\!12}a^{29}-\frac{42\!\cdots\!37}{16\!\cdots\!24}a^{28}+\frac{72\!\cdots\!57}{52\!\cdots\!57}a^{27}-\frac{10\!\cdots\!25}{16\!\cdots\!24}a^{26}+\frac{20\!\cdots\!49}{84\!\cdots\!12}a^{25}-\frac{13\!\cdots\!47}{16\!\cdots\!24}a^{24}+\frac{21\!\cdots\!07}{84\!\cdots\!12}a^{23}-\frac{88\!\cdots\!99}{12\!\cdots\!48}a^{22}+\frac{13\!\cdots\!69}{84\!\cdots\!12}a^{21}-\frac{61\!\cdots\!59}{16\!\cdots\!24}a^{20}+\frac{61\!\cdots\!95}{84\!\cdots\!12}a^{19}-\frac{22\!\cdots\!97}{16\!\cdots\!24}a^{18}+\frac{11\!\cdots\!54}{52\!\cdots\!57}a^{17}-\frac{13\!\cdots\!47}{42\!\cdots\!56}a^{16}+\frac{23\!\cdots\!45}{52\!\cdots\!57}a^{15}-\frac{91\!\cdots\!17}{16\!\cdots\!24}a^{14}+\frac{51\!\cdots\!29}{84\!\cdots\!12}a^{13}-\frac{10\!\cdots\!67}{16\!\cdots\!24}a^{12}+\frac{50\!\cdots\!99}{84\!\cdots\!12}a^{11}-\frac{90\!\cdots\!89}{16\!\cdots\!24}a^{10}+\frac{29\!\cdots\!29}{64\!\cdots\!24}a^{9}-\frac{61\!\cdots\!39}{16\!\cdots\!24}a^{8}+\frac{14\!\cdots\!65}{52\!\cdots\!57}a^{7}-\frac{63\!\cdots\!81}{33\!\cdots\!48}a^{6}+\frac{95\!\cdots\!63}{84\!\cdots\!12}a^{5}-\frac{95\!\cdots\!03}{16\!\cdots\!24}a^{4}+\frac{48\!\cdots\!55}{21\!\cdots\!28}a^{3}-\frac{45\!\cdots\!67}{64\!\cdots\!24}a^{2}+\frac{30\!\cdots\!91}{21\!\cdots\!28}a-\frac{64\!\cdots\!97}{42\!\cdots\!56}$, $\frac{96\!\cdots\!49}{25\!\cdots\!08}a^{31}-\frac{36\!\cdots\!37}{63\!\cdots\!52}a^{30}+\frac{17\!\cdots\!85}{31\!\cdots\!76}a^{29}-\frac{46\!\cdots\!73}{12\!\cdots\!04}a^{28}+\frac{12\!\cdots\!49}{63\!\cdots\!52}a^{27}-\frac{11\!\cdots\!31}{12\!\cdots\!04}a^{26}+\frac{56\!\cdots\!59}{15\!\cdots\!88}a^{25}-\frac{15\!\cdots\!51}{12\!\cdots\!04}a^{24}+\frac{11\!\cdots\!39}{31\!\cdots\!76}a^{23}-\frac{40\!\cdots\!21}{40\!\cdots\!84}a^{22}+\frac{45\!\cdots\!07}{18\!\cdots\!04}a^{21}-\frac{67\!\cdots\!43}{12\!\cdots\!04}a^{20}+\frac{67\!\cdots\!85}{63\!\cdots\!52}a^{19}-\frac{24\!\cdots\!01}{12\!\cdots\!04}a^{18}+\frac{39\!\cdots\!09}{12\!\cdots\!04}a^{17}-\frac{45\!\cdots\!29}{97\!\cdots\!08}a^{16}+\frac{20\!\cdots\!79}{31\!\cdots\!76}a^{15}-\frac{98\!\cdots\!77}{12\!\cdots\!04}a^{14}+\frac{55\!\cdots\!79}{63\!\cdots\!52}a^{13}-\frac{11\!\cdots\!61}{12\!\cdots\!04}a^{12}+\frac{20\!\cdots\!63}{24\!\cdots\!52}a^{11}-\frac{97\!\cdots\!45}{12\!\cdots\!04}a^{10}+\frac{70\!\cdots\!83}{10\!\cdots\!28}a^{9}-\frac{66\!\cdots\!49}{12\!\cdots\!04}a^{8}+\frac{10\!\cdots\!35}{25\!\cdots\!08}a^{7}-\frac{34\!\cdots\!57}{12\!\cdots\!04}a^{6}+\frac{20\!\cdots\!87}{12\!\cdots\!04}a^{5}-\frac{51\!\cdots\!27}{63\!\cdots\!52}a^{4}+\frac{20\!\cdots\!45}{63\!\cdots\!52}a^{3}-\frac{18\!\cdots\!31}{18\!\cdots\!04}a^{2}+\frac{63\!\cdots\!89}{31\!\cdots\!76}a-\frac{34\!\cdots\!87}{15\!\cdots\!88}$, $\frac{36\!\cdots\!55}{25\!\cdots\!08}a^{31}-\frac{14\!\cdots\!63}{63\!\cdots\!52}a^{30}+\frac{66\!\cdots\!57}{31\!\cdots\!76}a^{29}-\frac{18\!\cdots\!25}{12\!\cdots\!04}a^{28}+\frac{49\!\cdots\!65}{63\!\cdots\!52}a^{27}-\frac{45\!\cdots\!33}{12\!\cdots\!04}a^{26}+\frac{87\!\cdots\!13}{63\!\cdots\!52}a^{25}-\frac{60\!\cdots\!83}{12\!\cdots\!04}a^{24}+\frac{45\!\cdots\!47}{31\!\cdots\!76}a^{23}-\frac{49\!\cdots\!01}{12\!\cdots\!04}a^{22}+\frac{27\!\cdots\!51}{28\!\cdots\!16}a^{21}-\frac{85\!\cdots\!77}{40\!\cdots\!84}a^{20}+\frac{26\!\cdots\!91}{63\!\cdots\!52}a^{19}-\frac{96\!\cdots\!15}{12\!\cdots\!04}a^{18}+\frac{15\!\cdots\!25}{12\!\cdots\!04}a^{17}-\frac{18\!\cdots\!41}{97\!\cdots\!08}a^{16}+\frac{80\!\cdots\!73}{31\!\cdots\!76}a^{15}-\frac{39\!\cdots\!79}{12\!\cdots\!04}a^{14}+\frac{11\!\cdots\!43}{31\!\cdots\!76}a^{13}-\frac{45\!\cdots\!57}{12\!\cdots\!04}a^{12}+\frac{41\!\cdots\!89}{12\!\cdots\!76}a^{11}-\frac{39\!\cdots\!07}{12\!\cdots\!04}a^{10}+\frac{70\!\cdots\!79}{26\!\cdots\!32}a^{9}-\frac{26\!\cdots\!13}{12\!\cdots\!04}a^{8}+\frac{40\!\cdots\!81}{25\!\cdots\!08}a^{7}-\frac{13\!\cdots\!15}{12\!\cdots\!04}a^{6}+\frac{82\!\cdots\!11}{12\!\cdots\!04}a^{5}-\frac{20\!\cdots\!23}{63\!\cdots\!52}a^{4}+\frac{84\!\cdots\!23}{63\!\cdots\!52}a^{3}-\frac{75\!\cdots\!09}{18\!\cdots\!04}a^{2}+\frac{25\!\cdots\!05}{31\!\cdots\!76}a-\frac{13\!\cdots\!71}{15\!\cdots\!88}$, $\frac{70\!\cdots\!15}{23\!\cdots\!76}a^{31}-\frac{10\!\cdots\!23}{23\!\cdots\!76}a^{30}+\frac{10\!\cdots\!73}{23\!\cdots\!76}a^{29}-\frac{29\!\cdots\!35}{97\!\cdots\!16}a^{28}+\frac{37\!\cdots\!85}{23\!\cdots\!76}a^{27}-\frac{42\!\cdots\!17}{57\!\cdots\!44}a^{26}+\frac{66\!\cdots\!59}{23\!\cdots\!76}a^{25}-\frac{28\!\cdots\!81}{28\!\cdots\!72}a^{24}+\frac{69\!\cdots\!09}{23\!\cdots\!76}a^{23}-\frac{11\!\cdots\!49}{14\!\cdots\!36}a^{22}+\frac{35\!\cdots\!83}{17\!\cdots\!52}a^{21}-\frac{12\!\cdots\!75}{28\!\cdots\!72}a^{20}+\frac{20\!\cdots\!05}{23\!\cdots\!76}a^{19}-\frac{45\!\cdots\!95}{28\!\cdots\!72}a^{18}+\frac{91\!\cdots\!03}{35\!\cdots\!64}a^{17}-\frac{34\!\cdots\!27}{88\!\cdots\!76}a^{16}+\frac{12\!\cdots\!59}{23\!\cdots\!76}a^{15}-\frac{18\!\cdots\!41}{28\!\cdots\!72}a^{14}+\frac{16\!\cdots\!81}{23\!\cdots\!76}a^{13}-\frac{43\!\cdots\!75}{57\!\cdots\!44}a^{12}+\frac{12\!\cdots\!71}{17\!\cdots\!52}a^{11}-\frac{18\!\cdots\!75}{28\!\cdots\!72}a^{10}+\frac{12\!\cdots\!09}{23\!\cdots\!76}a^{9}-\frac{16\!\cdots\!79}{36\!\cdots\!92}a^{8}+\frac{12\!\cdots\!59}{36\!\cdots\!09}a^{7}-\frac{17\!\cdots\!59}{74\!\cdots\!96}a^{6}+\frac{10\!\cdots\!63}{73\!\cdots\!84}a^{5}-\frac{79\!\cdots\!11}{11\!\cdots\!88}a^{4}+\frac{40\!\cdots\!97}{14\!\cdots\!36}a^{3}-\frac{29\!\cdots\!15}{34\!\cdots\!76}a^{2}+\frac{51\!\cdots\!47}{28\!\cdots\!72}a-\frac{54\!\cdots\!93}{28\!\cdots\!72}$, $\frac{24\!\cdots\!25}{46\!\cdots\!52}a^{31}-\frac{18\!\cdots\!39}{23\!\cdots\!76}a^{30}+\frac{87\!\cdots\!59}{11\!\cdots\!88}a^{29}-\frac{60\!\cdots\!97}{11\!\cdots\!88}a^{28}+\frac{10\!\cdots\!01}{36\!\cdots\!09}a^{27}-\frac{15\!\cdots\!39}{11\!\cdots\!88}a^{26}+\frac{59\!\cdots\!85}{11\!\cdots\!88}a^{25}-\frac{10\!\cdots\!91}{57\!\cdots\!44}a^{24}+\frac{10\!\cdots\!19}{19\!\cdots\!32}a^{23}-\frac{16\!\cdots\!29}{11\!\cdots\!88}a^{22}+\frac{31\!\cdots\!11}{88\!\cdots\!76}a^{21}-\frac{45\!\cdots\!31}{57\!\cdots\!44}a^{20}+\frac{11\!\cdots\!53}{72\!\cdots\!18}a^{19}-\frac{41\!\cdots\!85}{14\!\cdots\!36}a^{18}+\frac{10\!\cdots\!79}{23\!\cdots\!76}a^{17}-\frac{31\!\cdots\!09}{44\!\cdots\!88}a^{16}+\frac{11\!\cdots\!31}{11\!\cdots\!88}a^{15}-\frac{13\!\cdots\!79}{11\!\cdots\!88}a^{14}+\frac{77\!\cdots\!65}{57\!\cdots\!44}a^{13}-\frac{40\!\cdots\!23}{28\!\cdots\!72}a^{12}+\frac{11\!\cdots\!63}{88\!\cdots\!76}a^{11}-\frac{13\!\cdots\!91}{11\!\cdots\!88}a^{10}+\frac{14\!\cdots\!79}{14\!\cdots\!36}a^{9}-\frac{24\!\cdots\!31}{28\!\cdots\!72}a^{8}+\frac{29\!\cdots\!63}{46\!\cdots\!52}a^{7}-\frac{99\!\cdots\!09}{23\!\cdots\!76}a^{6}+\frac{60\!\cdots\!39}{23\!\cdots\!76}a^{5}-\frac{15\!\cdots\!79}{11\!\cdots\!88}a^{4}+\frac{20\!\cdots\!87}{37\!\cdots\!48}a^{3}-\frac{56\!\cdots\!51}{34\!\cdots\!76}a^{2}+\frac{19\!\cdots\!69}{57\!\cdots\!44}a-\frac{10\!\cdots\!57}{28\!\cdots\!72}$, $\frac{35\!\cdots\!39}{57\!\cdots\!44}a^{31}-\frac{53\!\cdots\!15}{57\!\cdots\!44}a^{30}+\frac{10\!\cdots\!83}{11\!\cdots\!88}a^{29}-\frac{17\!\cdots\!63}{28\!\cdots\!72}a^{28}+\frac{37\!\cdots\!85}{11\!\cdots\!88}a^{27}-\frac{16\!\cdots\!09}{11\!\cdots\!88}a^{26}+\frac{33\!\cdots\!09}{57\!\cdots\!44}a^{25}-\frac{56\!\cdots\!99}{28\!\cdots\!72}a^{24}+\frac{67\!\cdots\!79}{11\!\cdots\!88}a^{23}-\frac{18\!\cdots\!53}{11\!\cdots\!88}a^{22}+\frac{17\!\cdots\!25}{44\!\cdots\!88}a^{21}-\frac{24\!\cdots\!99}{28\!\cdots\!72}a^{20}+\frac{19\!\cdots\!59}{11\!\cdots\!88}a^{19}-\frac{35\!\cdots\!53}{11\!\cdots\!88}a^{18}+\frac{29\!\cdots\!93}{57\!\cdots\!44}a^{17}-\frac{16\!\cdots\!39}{22\!\cdots\!44}a^{16}+\frac{11\!\cdots\!57}{11\!\cdots\!88}a^{15}-\frac{14\!\cdots\!65}{11\!\cdots\!88}a^{14}+\frac{99\!\cdots\!27}{72\!\cdots\!18}a^{13}-\frac{26\!\cdots\!59}{18\!\cdots\!24}a^{12}+\frac{11\!\cdots\!59}{88\!\cdots\!76}a^{11}-\frac{45\!\cdots\!51}{37\!\cdots\!48}a^{10}+\frac{74\!\cdots\!89}{72\!\cdots\!18}a^{9}-\frac{47\!\cdots\!07}{57\!\cdots\!44}a^{8}+\frac{71\!\cdots\!33}{11\!\cdots\!88}a^{7}-\frac{49\!\cdots\!63}{11\!\cdots\!88}a^{6}+\frac{29\!\cdots\!69}{11\!\cdots\!88}a^{5}-\frac{72\!\cdots\!75}{57\!\cdots\!44}a^{4}+\frac{14\!\cdots\!37}{28\!\cdots\!72}a^{3}-\frac{26\!\cdots\!83}{17\!\cdots\!88}a^{2}+\frac{89\!\cdots\!87}{28\!\cdots\!72}a-\frac{47\!\cdots\!95}{14\!\cdots\!36}$, $\frac{30\!\cdots\!71}{11\!\cdots\!88}a^{31}-\frac{93\!\cdots\!89}{23\!\cdots\!76}a^{30}+\frac{87\!\cdots\!23}{23\!\cdots\!76}a^{29}-\frac{29\!\cdots\!63}{11\!\cdots\!88}a^{28}+\frac{32\!\cdots\!57}{23\!\cdots\!76}a^{27}-\frac{36\!\cdots\!61}{57\!\cdots\!44}a^{26}+\frac{57\!\cdots\!57}{23\!\cdots\!76}a^{25}-\frac{97\!\cdots\!55}{11\!\cdots\!88}a^{24}+\frac{58\!\cdots\!65}{23\!\cdots\!76}a^{23}-\frac{24\!\cdots\!58}{36\!\cdots\!09}a^{22}+\frac{29\!\cdots\!13}{17\!\cdots\!52}a^{21}-\frac{42\!\cdots\!67}{11\!\cdots\!88}a^{20}+\frac{54\!\cdots\!67}{74\!\cdots\!96}a^{19}-\frac{76\!\cdots\!05}{57\!\cdots\!44}a^{18}+\frac{49\!\cdots\!05}{23\!\cdots\!76}a^{17}-\frac{14\!\cdots\!21}{44\!\cdots\!88}a^{16}+\frac{10\!\cdots\!91}{23\!\cdots\!76}a^{15}-\frac{30\!\cdots\!49}{57\!\cdots\!44}a^{14}+\frac{13\!\cdots\!39}{23\!\cdots\!76}a^{13}-\frac{70\!\cdots\!05}{11\!\cdots\!88}a^{12}+\frac{10\!\cdots\!87}{17\!\cdots\!52}a^{11}-\frac{29\!\cdots\!25}{57\!\cdots\!44}a^{10}+\frac{10\!\cdots\!51}{23\!\cdots\!76}a^{9}-\frac{41\!\cdots\!29}{11\!\cdots\!88}a^{8}+\frac{61\!\cdots\!45}{23\!\cdots\!76}a^{7}-\frac{41\!\cdots\!15}{23\!\cdots\!76}a^{6}+\frac{62\!\cdots\!25}{57\!\cdots\!44}a^{5}-\frac{62\!\cdots\!09}{11\!\cdots\!88}a^{4}+\frac{12\!\cdots\!27}{57\!\cdots\!44}a^{3}-\frac{22\!\cdots\!81}{34\!\cdots\!76}a^{2}+\frac{47\!\cdots\!03}{36\!\cdots\!09}a-\frac{40\!\cdots\!95}{28\!\cdots\!72}$, $\frac{44\!\cdots\!87}{39\!\cdots\!64}a^{31}-\frac{40\!\cdots\!49}{23\!\cdots\!76}a^{30}+\frac{38\!\cdots\!77}{23\!\cdots\!76}a^{29}-\frac{13\!\cdots\!65}{11\!\cdots\!88}a^{28}+\frac{14\!\cdots\!57}{23\!\cdots\!76}a^{27}-\frac{33\!\cdots\!31}{11\!\cdots\!88}a^{26}+\frac{26\!\cdots\!55}{23\!\cdots\!76}a^{25}-\frac{75\!\cdots\!95}{19\!\cdots\!32}a^{24}+\frac{27\!\cdots\!29}{23\!\cdots\!76}a^{23}-\frac{37\!\cdots\!61}{11\!\cdots\!88}a^{22}+\frac{10\!\cdots\!51}{13\!\cdots\!04}a^{21}-\frac{20\!\cdots\!85}{11\!\cdots\!88}a^{20}+\frac{80\!\cdots\!85}{23\!\cdots\!76}a^{19}-\frac{73\!\cdots\!85}{11\!\cdots\!88}a^{18}+\frac{24\!\cdots\!37}{23\!\cdots\!76}a^{17}-\frac{70\!\cdots\!87}{44\!\cdots\!88}a^{16}+\frac{49\!\cdots\!27}{23\!\cdots\!76}a^{15}-\frac{30\!\cdots\!75}{11\!\cdots\!88}a^{14}+\frac{69\!\cdots\!01}{23\!\cdots\!76}a^{13}-\frac{60\!\cdots\!99}{19\!\cdots\!32}a^{12}+\frac{53\!\cdots\!79}{17\!\cdots\!52}a^{11}-\frac{31\!\cdots\!19}{11\!\cdots\!88}a^{10}+\frac{53\!\cdots\!09}{23\!\cdots\!76}a^{9}-\frac{21\!\cdots\!09}{11\!\cdots\!88}a^{8}+\frac{16\!\cdots\!77}{11\!\cdots\!88}a^{7}-\frac{22\!\cdots\!61}{23\!\cdots\!76}a^{6}+\frac{68\!\cdots\!19}{11\!\cdots\!88}a^{5}-\frac{34\!\cdots\!53}{11\!\cdots\!88}a^{4}+\frac{35\!\cdots\!45}{28\!\cdots\!72}a^{3}-\frac{65\!\cdots\!79}{16\!\cdots\!36}a^{2}+\frac{23\!\cdots\!59}{28\!\cdots\!72}a-\frac{26\!\cdots\!75}{28\!\cdots\!72}$, $\frac{97\!\cdots\!86}{72\!\cdots\!71}a^{31}-\frac{19\!\cdots\!71}{92\!\cdots\!88}a^{30}+\frac{18\!\cdots\!33}{92\!\cdots\!88}a^{29}-\frac{12\!\cdots\!89}{92\!\cdots\!88}a^{28}+\frac{67\!\cdots\!95}{92\!\cdots\!88}a^{27}-\frac{30\!\cdots\!11}{92\!\cdots\!88}a^{26}+\frac{12\!\cdots\!33}{92\!\cdots\!88}a^{25}-\frac{41\!\cdots\!01}{92\!\cdots\!88}a^{24}+\frac{12\!\cdots\!47}{92\!\cdots\!88}a^{23}-\frac{57\!\cdots\!09}{15\!\cdots\!32}a^{22}+\frac{83\!\cdots\!61}{92\!\cdots\!88}a^{21}-\frac{18\!\cdots\!21}{92\!\cdots\!88}a^{20}+\frac{36\!\cdots\!83}{92\!\cdots\!88}a^{19}-\frac{66\!\cdots\!11}{92\!\cdots\!88}a^{18}+\frac{84\!\cdots\!69}{71\!\cdots\!76}a^{17}-\frac{16\!\cdots\!79}{92\!\cdots\!88}a^{16}+\frac{22\!\cdots\!81}{92\!\cdots\!88}a^{15}-\frac{27\!\cdots\!25}{92\!\cdots\!88}a^{14}+\frac{99\!\cdots\!73}{29\!\cdots\!48}a^{13}-\frac{31\!\cdots\!95}{92\!\cdots\!88}a^{12}+\frac{30\!\cdots\!93}{92\!\cdots\!88}a^{11}-\frac{27\!\cdots\!97}{92\!\cdots\!88}a^{10}+\frac{23\!\cdots\!15}{92\!\cdots\!88}a^{9}-\frac{18\!\cdots\!47}{92\!\cdots\!88}a^{8}+\frac{14\!\cdots\!05}{92\!\cdots\!88}a^{7}-\frac{48\!\cdots\!03}{46\!\cdots\!44}a^{6}+\frac{22\!\cdots\!77}{35\!\cdots\!88}a^{5}-\frac{73\!\cdots\!13}{23\!\cdots\!72}a^{4}+\frac{29\!\cdots\!23}{23\!\cdots\!72}a^{3}-\frac{11\!\cdots\!89}{28\!\cdots\!12}a^{2}+\frac{92\!\cdots\!93}{11\!\cdots\!36}a-\frac{12\!\cdots\!33}{14\!\cdots\!42}$, $\frac{32\!\cdots\!31}{60\!\cdots\!56}a^{31}-\frac{14\!\cdots\!49}{17\!\cdots\!52}a^{30}+\frac{17\!\cdots\!69}{22\!\cdots\!44}a^{29}-\frac{23\!\cdots\!79}{44\!\cdots\!88}a^{28}+\frac{41\!\cdots\!35}{14\!\cdots\!48}a^{27}-\frac{28\!\cdots\!33}{22\!\cdots\!44}a^{26}+\frac{44\!\cdots\!15}{88\!\cdots\!76}a^{25}-\frac{25\!\cdots\!57}{15\!\cdots\!64}a^{24}+\frac{46\!\cdots\!33}{88\!\cdots\!76}a^{23}-\frac{62\!\cdots\!61}{44\!\cdots\!88}a^{22}+\frac{30\!\cdots\!65}{88\!\cdots\!76}a^{21}-\frac{67\!\cdots\!31}{88\!\cdots\!76}a^{20}+\frac{16\!\cdots\!71}{11\!\cdots\!72}a^{19}-\frac{24\!\cdots\!25}{88\!\cdots\!76}a^{18}+\frac{79\!\cdots\!47}{17\!\cdots\!52}a^{17}-\frac{59\!\cdots\!61}{88\!\cdots\!76}a^{16}+\frac{79\!\cdots\!65}{88\!\cdots\!76}a^{15}-\frac{48\!\cdots\!13}{44\!\cdots\!88}a^{14}+\frac{88\!\cdots\!63}{71\!\cdots\!24}a^{13}-\frac{18\!\cdots\!33}{15\!\cdots\!64}a^{12}+\frac{10\!\cdots\!55}{88\!\cdots\!76}a^{11}-\frac{47\!\cdots\!65}{44\!\cdots\!88}a^{10}+\frac{40\!\cdots\!67}{44\!\cdots\!88}a^{9}-\frac{50\!\cdots\!31}{68\!\cdots\!52}a^{8}+\frac{19\!\cdots\!95}{35\!\cdots\!04}a^{7}-\frac{67\!\cdots\!29}{17\!\cdots\!52}a^{6}+\frac{12\!\cdots\!23}{57\!\cdots\!92}a^{5}-\frac{10\!\cdots\!11}{88\!\cdots\!76}a^{4}+\frac{31\!\cdots\!37}{68\!\cdots\!52}a^{3}-\frac{47\!\cdots\!27}{34\!\cdots\!76}a^{2}+\frac{12\!\cdots\!19}{44\!\cdots\!88}a-\frac{16\!\cdots\!47}{55\!\cdots\!48}$, $\frac{56\!\cdots\!69}{35\!\cdots\!04}a^{31}-\frac{85\!\cdots\!37}{35\!\cdots\!04}a^{30}+\frac{80\!\cdots\!85}{35\!\cdots\!04}a^{29}-\frac{54\!\cdots\!71}{35\!\cdots\!04}a^{28}+\frac{96\!\cdots\!21}{11\!\cdots\!84}a^{27}-\frac{13\!\cdots\!41}{35\!\cdots\!04}a^{26}+\frac{89\!\cdots\!71}{60\!\cdots\!56}a^{25}-\frac{17\!\cdots\!55}{35\!\cdots\!04}a^{24}+\frac{54\!\cdots\!95}{35\!\cdots\!04}a^{23}-\frac{11\!\cdots\!05}{27\!\cdots\!08}a^{22}+\frac{11\!\cdots\!75}{11\!\cdots\!84}a^{21}-\frac{78\!\cdots\!23}{35\!\cdots\!04}a^{20}+\frac{15\!\cdots\!03}{35\!\cdots\!04}a^{19}-\frac{28\!\cdots\!17}{35\!\cdots\!04}a^{18}+\frac{46\!\cdots\!87}{35\!\cdots\!04}a^{17}-\frac{69\!\cdots\!25}{35\!\cdots\!04}a^{16}+\frac{93\!\cdots\!09}{35\!\cdots\!04}a^{15}-\frac{11\!\cdots\!71}{35\!\cdots\!04}a^{14}+\frac{21\!\cdots\!77}{60\!\cdots\!56}a^{13}-\frac{13\!\cdots\!17}{35\!\cdots\!04}a^{12}+\frac{40\!\cdots\!43}{11\!\cdots\!84}a^{11}-\frac{11\!\cdots\!79}{35\!\cdots\!04}a^{10}+\frac{56\!\cdots\!39}{21\!\cdots\!16}a^{9}-\frac{76\!\cdots\!13}{35\!\cdots\!04}a^{8}+\frac{17\!\cdots\!57}{11\!\cdots\!72}a^{7}-\frac{19\!\cdots\!85}{17\!\cdots\!52}a^{6}+\frac{14\!\cdots\!23}{22\!\cdots\!44}a^{5}-\frac{28\!\cdots\!47}{88\!\cdots\!76}a^{4}+\frac{27\!\cdots\!93}{22\!\cdots\!44}a^{3}-\frac{12\!\cdots\!93}{34\!\cdots\!76}a^{2}+\frac{15\!\cdots\!81}{22\!\cdots\!44}a-\frac{30\!\cdots\!76}{47\!\cdots\!27}$, $\frac{11\!\cdots\!95}{46\!\cdots\!52}a^{31}-\frac{20\!\cdots\!61}{57\!\cdots\!44}a^{30}+\frac{78\!\cdots\!17}{23\!\cdots\!76}a^{29}-\frac{53\!\cdots\!75}{23\!\cdots\!76}a^{28}+\frac{29\!\cdots\!63}{23\!\cdots\!76}a^{27}-\frac{13\!\cdots\!99}{23\!\cdots\!76}a^{26}+\frac{51\!\cdots\!69}{23\!\cdots\!76}a^{25}-\frac{49\!\cdots\!65}{66\!\cdots\!24}a^{24}+\frac{52\!\cdots\!61}{23\!\cdots\!76}a^{23}-\frac{14\!\cdots\!99}{23\!\cdots\!76}a^{22}+\frac{26\!\cdots\!33}{17\!\cdots\!52}a^{21}-\frac{75\!\cdots\!65}{23\!\cdots\!76}a^{20}+\frac{15\!\cdots\!39}{23\!\cdots\!76}a^{19}-\frac{27\!\cdots\!65}{23\!\cdots\!76}a^{18}+\frac{28\!\cdots\!81}{14\!\cdots\!36}a^{17}-\frac{51\!\cdots\!15}{17\!\cdots\!52}a^{16}+\frac{89\!\cdots\!51}{23\!\cdots\!76}a^{15}-\frac{11\!\cdots\!89}{23\!\cdots\!76}a^{14}+\frac{12\!\cdots\!21}{23\!\cdots\!76}a^{13}-\frac{12\!\cdots\!99}{23\!\cdots\!76}a^{12}+\frac{92\!\cdots\!39}{17\!\cdots\!52}a^{11}-\frac{10\!\cdots\!29}{23\!\cdots\!76}a^{10}+\frac{91\!\cdots\!93}{23\!\cdots\!76}a^{9}-\frac{73\!\cdots\!63}{23\!\cdots\!76}a^{8}+\frac{11\!\cdots\!67}{46\!\cdots\!52}a^{7}-\frac{37\!\cdots\!07}{23\!\cdots\!76}a^{6}+\frac{22\!\cdots\!79}{23\!\cdots\!76}a^{5}-\frac{55\!\cdots\!11}{11\!\cdots\!88}a^{4}+\frac{22\!\cdots\!17}{11\!\cdots\!88}a^{3}-\frac{20\!\cdots\!45}{34\!\cdots\!76}a^{2}+\frac{68\!\cdots\!29}{57\!\cdots\!44}a-\frac{36\!\cdots\!79}{28\!\cdots\!72}$, $\frac{32\!\cdots\!09}{34\!\cdots\!76}a^{31}-\frac{50\!\cdots\!53}{35\!\cdots\!04}a^{30}+\frac{47\!\cdots\!51}{35\!\cdots\!04}a^{29}-\frac{32\!\cdots\!13}{35\!\cdots\!04}a^{28}+\frac{17\!\cdots\!53}{35\!\cdots\!04}a^{27}-\frac{78\!\cdots\!63}{35\!\cdots\!04}a^{26}+\frac{30\!\cdots\!51}{35\!\cdots\!04}a^{25}-\frac{10\!\cdots\!45}{35\!\cdots\!04}a^{24}+\frac{31\!\cdots\!41}{35\!\cdots\!04}a^{23}-\frac{84\!\cdots\!87}{35\!\cdots\!04}a^{22}+\frac{20\!\cdots\!59}{35\!\cdots\!04}a^{21}-\frac{45\!\cdots\!21}{35\!\cdots\!04}a^{20}+\frac{90\!\cdots\!77}{35\!\cdots\!04}a^{19}-\frac{16\!\cdots\!71}{35\!\cdots\!04}a^{18}+\frac{26\!\cdots\!15}{35\!\cdots\!04}a^{17}-\frac{39\!\cdots\!07}{35\!\cdots\!04}a^{16}+\frac{53\!\cdots\!39}{35\!\cdots\!04}a^{15}-\frac{65\!\cdots\!29}{35\!\cdots\!04}a^{14}+\frac{73\!\cdots\!33}{35\!\cdots\!04}a^{13}-\frac{74\!\cdots\!55}{35\!\cdots\!04}a^{12}+\frac{71\!\cdots\!51}{35\!\cdots\!04}a^{11}-\frac{64\!\cdots\!77}{35\!\cdots\!04}a^{10}+\frac{54\!\cdots\!81}{35\!\cdots\!04}a^{9}-\frac{43\!\cdots\!99}{35\!\cdots\!04}a^{8}+\frac{25\!\cdots\!39}{27\!\cdots\!08}a^{7}-\frac{55\!\cdots\!87}{88\!\cdots\!76}a^{6}+\frac{66\!\cdots\!65}{17\!\cdots\!52}a^{5}-\frac{20\!\cdots\!93}{11\!\cdots\!72}a^{4}+\frac{66\!\cdots\!37}{88\!\cdots\!76}a^{3}-\frac{96\!\cdots\!39}{42\!\cdots\!22}a^{2}+\frac{15\!\cdots\!53}{34\!\cdots\!76}a-\frac{10\!\cdots\!65}{22\!\cdots\!44}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 233422630699.0076 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 233422630699.0076 \cdot 24}{24\cdot\sqrt{7790452574060543254749837160138952789467349385216}}\cr\approx \mathstrut & 0.493445859313154 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 156*x^30 - 1096*x^29 + 6134*x^28 - 28580*x^27 + 114266*x^26 - 399684*x^25 + 1239490*x^24 - 3440780*x^23 + 8605010*x^22 - 19473044*x^21 + 39982438*x^20 - 74587072*x^19 + 126485556*x^18 - 194983784*x^17 + 273242634*x^16 - 348358772*x^15 + 405080242*x^14 - 431986068*x^13 + 426399702*x^12 - 394223580*x^11 + 344722538*x^10 - 285681476*x^9 + 222647745*x^8 - 160135088*x^7 + 103163456*x^6 - 57484000*x^5 + 26721528*x^4 - 9914240*x^3 + 2744800*x^2 - 506176*x + 48016);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times D_4^2$ (as 32T1016):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 50 conjugacy class representatives for $C_2\times D_4^2$
Character table for $C_2\times D_4^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), 4.4.76032.1, 4.0.4752.1, 4.4.4752.1, 4.0.76032.2, \(\Q(\zeta_{8})\), 4.0.39168.3, 4.4.9792.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), 4.4.4352.1, 4.0.1088.2, \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), 8.0.1534132224.8, 8.0.18939904.2, \(\Q(\zeta_{24})\), 8.0.1534132224.10, 8.0.1534132224.4, 8.8.1534132224.1, 8.0.95883264.1, 8.0.5780865024.3, 8.0.5780865024.13, 8.0.1670669991936.5, 8.8.1670669991936.3, 8.8.5780865024.1, 8.0.5780865024.4, 8.0.5780865024.5, 8.0.22581504.2, 16.0.2353561680715186176.2, 16.0.2791138221955434305028096.4, 16.0.33418400425706520576.1, 16.0.2791138221955434305028096.2, 16.0.2791138221955434305028096.1, 16.16.2791138221955434305028096.1, 16.0.2791138221955434305028096.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{8}$ ${\href{/padicField/7.4.0.1}{4} }^{8}$ R ${\href{/padicField/13.2.0.1}{2} }^{16}$ R ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.2.0.1}{2} }^{16}$ ${\href{/padicField/29.4.0.1}{4} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{16}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{16}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.6$x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
\(3\) Copy content Toggle raw display 3.16.12.1$x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 36 x^{12} + 120 x^{11} + 312 x^{10} + 352 x^{9} - 522 x^{8} - 2664 x^{7} - 3672 x^{6} - 1440 x^{5} + 4292 x^{4} + 7720 x^{3} + 6408 x^{2} + 2592 x + 433$$4$$4$$12$$C_4:C_4$$[\ ]_{4}^{4}$
3.16.12.1$x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 36 x^{12} + 120 x^{11} + 312 x^{10} + 352 x^{9} - 522 x^{8} - 2664 x^{7} - 3672 x^{6} - 1440 x^{5} + 4292 x^{4} + 7720 x^{3} + 6408 x^{2} + 2592 x + 433$$4$$4$$12$$C_4:C_4$$[\ ]_{4}^{4}$
\(11\) Copy content Toggle raw display 11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} + 8 x^{2} + 10 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(17\) Copy content Toggle raw display 17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$