Normalized defining polynomial
\(x^{32} - 4 x^{31} + 10 x^{30} - 20 x^{29} + 34 x^{28} - 32 x^{27} - 8 x^{26} + 112 x^{25} - 308 x^{24} + 608 x^{23} - 880 x^{22} + 944 x^{21} - 536 x^{20} - 672 x^{19} + 2960 x^{18} - 6176 x^{17} + 9744 x^{16} - 12352 x^{15} + 11840 x^{14} - 5376 x^{13} - 8576 x^{12} + 30208 x^{11} - 56320 x^{10} + 77824 x^{9} - 78848 x^{8} + 57344 x^{7} - 8192 x^{6} - 65536 x^{5} + 139264 x^{4} - 163840 x^{3} + 163840 x^{2} - 131072 x + 65536\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(7669926418924454281216000000000000000000000000\)\(\medspace = 2^{64}\cdot 5^{24}\cdot 17^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $27.16$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 5, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{14} - \frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{19} - \frac{1}{32} a^{17} + \frac{1}{32} a^{15} - \frac{1}{16} a^{11} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{128} a^{20} - \frac{1}{64} a^{18} - \frac{1}{32} a^{17} + \frac{1}{64} a^{16} - \frac{1}{16} a^{15} - \frac{1}{32} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4}$, $\frac{1}{128} a^{21} - \frac{1}{64} a^{17} + \frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{1}{32} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{256} a^{22} - \frac{1}{128} a^{18} - \frac{1}{32} a^{17} + \frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{1}{64} a^{14} - \frac{1}{16} a^{13} - \frac{1}{32} a^{12} - \frac{1}{8} a^{11} + \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{512} a^{23} - \frac{1}{256} a^{21} + \frac{1}{256} a^{19} + \frac{1}{64} a^{16} + \frac{7}{128} a^{15} + \frac{1}{32} a^{14} + \frac{1}{64} a^{11} - \frac{1}{8} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4}$, $\frac{1}{1024} a^{24} - \frac{1}{512} a^{22} - \frac{1}{256} a^{21} + \frac{1}{512} a^{20} - \frac{1}{128} a^{19} - \frac{1}{64} a^{18} - \frac{1}{256} a^{16} + \frac{3}{64} a^{15} + \frac{1}{64} a^{13} - \frac{7}{128} a^{12} - \frac{5}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{64} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{1024} a^{25} - \frac{1}{512} a^{21} + \frac{1}{256} a^{19} + \frac{1}{128} a^{18} + \frac{7}{256} a^{17} - \frac{1}{32} a^{16} - \frac{1}{128} a^{15} - \frac{1}{32} a^{14} + \frac{1}{128} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{3}{32} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2048} a^{26} - \frac{1}{1024} a^{22} - \frac{1}{256} a^{21} + \frac{1}{512} a^{20} - \frac{1}{256} a^{19} - \frac{1}{512} a^{18} - \frac{3}{128} a^{17} + \frac{7}{256} a^{16} + \frac{1}{64} a^{15} + \frac{1}{256} a^{14} - \frac{1}{64} a^{13} + \frac{1}{16} a^{11} - \frac{9}{128} a^{10} - \frac{1}{16} a^{9} - \frac{3}{64} a^{8} + \frac{7}{32} a^{7} + \frac{1}{8} a^{5}$, $\frac{1}{4096} a^{27} - \frac{1}{2048} a^{25} + \frac{1}{2048} a^{23} + \frac{1}{512} a^{20} + \frac{7}{1024} a^{19} - \frac{3}{256} a^{18} + \frac{1}{64} a^{17} - \frac{1}{64} a^{16} - \frac{31}{512} a^{15} - \frac{1}{64} a^{14} + \frac{7}{256} a^{13} + \frac{1}{32} a^{12} - \frac{31}{256} a^{11} - \frac{1}{64} a^{10} + \frac{3}{32} a^{9} + \frac{3}{64} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8192} a^{28} - \frac{1}{4096} a^{26} - \frac{1}{2048} a^{25} + \frac{1}{4096} a^{24} - \frac{1}{1024} a^{23} - \frac{1}{512} a^{22} - \frac{1}{2048} a^{20} + \frac{3}{512} a^{19} - \frac{1}{64} a^{18} - \frac{7}{512} a^{17} - \frac{7}{1024} a^{16} + \frac{1}{32} a^{15} - \frac{5}{512} a^{14} - \frac{1}{256} a^{13} - \frac{31}{512} a^{12} - \frac{7}{64} a^{11} + \frac{3}{32} a^{10} - \frac{7}{64} a^{9} + \frac{1}{16} a^{8} - \frac{3}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8192} a^{29} - \frac{1}{4096} a^{25} + \frac{1}{2048} a^{23} + \frac{1}{1024} a^{22} + \frac{7}{2048} a^{21} - \frac{1}{256} a^{20} - \frac{1}{1024} a^{19} + \frac{3}{256} a^{18} + \frac{17}{1024} a^{17} - \frac{3}{128} a^{16} - \frac{1}{64} a^{15} - \frac{1}{16} a^{14} - \frac{17}{512} a^{13} + \frac{3}{128} a^{12} - \frac{3}{256} a^{11} + \frac{1}{128} a^{10} + \frac{1}{32} a^{9} + \frac{3}{64} a^{8} - \frac{1}{4} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{16384} a^{30} - \frac{1}{8192} a^{26} - \frac{1}{2048} a^{25} + \frac{1}{4096} a^{24} - \frac{1}{2048} a^{23} - \frac{1}{4096} a^{22} - \frac{3}{1024} a^{21} + \frac{7}{2048} a^{20} + \frac{1}{512} a^{19} + \frac{1}{2048} a^{18} - \frac{9}{512} a^{17} - \frac{1}{32} a^{16} + \frac{5}{128} a^{15} - \frac{41}{1024} a^{14} + \frac{7}{128} a^{13} - \frac{19}{512} a^{12} + \frac{23}{256} a^{11} + \frac{1}{16} a^{10} - \frac{7}{64} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5}$, $\frac{1}{32768} a^{31} - \frac{1}{16384} a^{29} + \frac{1}{16384} a^{27} + \frac{1}{4096} a^{24} + \frac{7}{8192} a^{23} - \frac{3}{2048} a^{22} + \frac{1}{512} a^{21} - \frac{1}{512} a^{20} - \frac{31}{4096} a^{19} - \frac{1}{512} a^{18} - \frac{25}{2048} a^{17} + \frac{1}{256} a^{16} - \frac{95}{2048} a^{15} - \frac{17}{512} a^{14} + \frac{3}{256} a^{13} - \frac{13}{512} a^{12} + \frac{3}{64} a^{11} - \frac{1}{8} a^{10} + \frac{3}{64} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{1}{512} a^{31} - \frac{13}{4096} a^{30} + \frac{9}{2048} a^{29} - \frac{1}{64} a^{28} + \frac{17}{512} a^{27} - \frac{145}{2048} a^{26} + \frac{7}{1024} a^{25} + \frac{15}{512} a^{24} - \frac{1}{4} a^{23} + \frac{609}{1024} a^{22} - \frac{531}{512} a^{21} + \frac{281}{256} a^{20} - \frac{255}{256} a^{19} - \frac{143}{512} a^{18} + \frac{697}{256} a^{17} - \frac{1629}{256} a^{16} + \frac{685}{64} a^{15} - \frac{3681}{256} a^{14} + \frac{1927}{128} a^{13} - \frac{601}{64} a^{12} - \frac{35}{4} a^{11} + \frac{963}{32} a^{10} - \frac{545}{8} a^{9} + \frac{6241}{64} a^{8} - \frac{213}{2} a^{7} + \frac{229}{4} a^{6} - 40 a^{5} - 110 a^{4} + \frac{739}{4} a^{3} - 226 a^{2} + 168 a - 232 \) (order $40$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 23735246685.523792 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_4\times D_4$ (as 32T204):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2\times C_4\times D_4$ |
Character table for $C_2\times C_4\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
5 | Data not computed | ||||||
$17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |