Normalized defining polynomial
\( x^{32} + 7 x^{30} + 9 x^{28} - 154 x^{26} - 1078 x^{24} - 5593 x^{22} - 6462 x^{20} + 123046 x^{18} + 854761 x^{16} + 1107414 x^{14} - 523422 x^{12} - 4077297 x^{10} - 7072758 x^{8} - 9093546 x^{6} + 4782969 x^{4} + 33480783 x^{2} + 43046721 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7332864799814241410137948416000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(131,·)$, $\chi_{780}(389,·)$, $\chi_{780}(391,·)$, $\chi_{780}(521,·)$, $\chi_{780}(779,·)$, $\chi_{780}(259,·)$, $\chi_{780}(157,·)$, $\chi_{780}(287,·)$, $\chi_{780}(547,·)$, $\chi_{780}(677,·)$, $\chi_{780}(181,·)$, $\chi_{780}(649,·)$, $\chi_{780}(313,·)$, $\chi_{780}(443,·)$, $\chi_{780}(701,·)$, $\chi_{780}(53,·)$, $\chi_{780}(599,·)$, $\chi_{780}(311,·)$, $\chi_{780}(77,·)$, $\chi_{780}(79,·)$, $\chi_{780}(209,·)$, $\chi_{780}(467,·)$, $\chi_{780}(469,·)$, $\chi_{780}(727,·)$, $\chi_{780}(571,·)$, $\chi_{780}(337,·)$, $\chi_{780}(233,·)$, $\chi_{780}(103,·)$, $\chi_{780}(493,·)$, $\chi_{780}(623,·)$, $\chi_{780}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{2}{9} a^{16} - \frac{1}{9} a^{12} + \frac{2}{9} a^{10} - \frac{4}{9} a^{8} - \frac{2}{9} a^{4} + \frac{4}{9} a^{2}$, $\frac{1}{27} a^{19} - \frac{2}{27} a^{17} + \frac{8}{27} a^{13} + \frac{11}{27} a^{11} + \frac{5}{27} a^{9} + \frac{7}{27} a^{5} + \frac{13}{27} a^{3}$, $\frac{1}{93879} a^{20} + \frac{1}{81} a^{18} - \frac{1}{3} a^{16} + \frac{23}{81} a^{14} + \frac{8}{81} a^{12} - \frac{27022}{93879} a^{10} + \frac{1}{3} a^{8} + \frac{10}{81} a^{6} + \frac{7}{81} a^{4} - \frac{1}{3} a^{2} - \frac{430}{1159}$, $\frac{1}{281637} a^{21} + \frac{1}{243} a^{19} - \frac{1}{9} a^{17} + \frac{104}{243} a^{15} + \frac{89}{243} a^{13} - \frac{120901}{281637} a^{11} - \frac{2}{9} a^{9} + \frac{10}{243} a^{7} + \frac{88}{243} a^{5} + \frac{2}{9} a^{3} - \frac{430}{3477} a$, $\frac{1}{844911} a^{22} - \frac{2}{844911} a^{20} + \frac{1}{27} a^{18} + \frac{347}{729} a^{16} + \frac{116}{729} a^{14} + \frac{98150}{844911} a^{12} + \frac{1787}{31293} a^{10} - \frac{233}{729} a^{8} - \frac{101}{729} a^{6} + \frac{7}{27} a^{4} - \frac{430}{10431} a^{2} - \frac{162}{1159}$, $\frac{1}{2534733} a^{23} - \frac{2}{2534733} a^{21} + \frac{1}{81} a^{19} + \frac{347}{2187} a^{17} + \frac{845}{2187} a^{15} - \frac{746761}{2534733} a^{13} + \frac{1787}{93879} a^{11} + \frac{496}{2187} a^{9} + \frac{628}{2187} a^{7} + \frac{7}{81} a^{5} + \frac{10001}{31293} a^{3} + \frac{997}{3477} a$, $\frac{1}{304167960} a^{24} + \frac{4}{7604199} a^{22} + \frac{1}{281637} a^{20} - \frac{6943}{262440} a^{18} - \frac{961}{6561} a^{16} + \frac{3546386}{7604199} a^{14} - \frac{35173}{11265480} a^{12} + \frac{1813252}{7604199} a^{10} + \frac{202}{6561} a^{8} - \frac{4541}{9720} a^{6} - \frac{39127}{93879} a^{4} - \frac{835}{10431} a^{2} + \frac{8561}{46360}$, $\frac{1}{912503880} a^{25} + \frac{4}{22812597} a^{23} + \frac{1}{844911} a^{21} - \frac{6943}{787320} a^{19} - \frac{961}{19683} a^{17} + \frac{11150585}{22812597} a^{15} + \frac{11230307}{33796440} a^{13} + \frac{9417451}{22812597} a^{11} - \frac{6359}{19683} a^{9} - \frac{4541}{29160} a^{7} - \frac{39127}{281637} a^{5} - \frac{11266}{31293} a^{3} + \frac{18307}{46360} a$, $\frac{1}{1207228945681800} a^{26} + \frac{20347}{63538365562200} a^{24} + \frac{1418701}{3353413738005} a^{22} + \frac{187350677}{63538365562200} a^{20} - \frac{16872007159}{1041612550200} a^{18} + \frac{1476966419279}{30180723642045} a^{16} - \frac{1577962199461}{7059818395800} a^{14} + \frac{300390164806777}{1207228945681800} a^{12} + \frac{122948617627}{1588459139055} a^{10} + \frac{40045922737}{115734727800} a^{8} + \frac{1537258154837}{4968020352600} a^{6} + \frac{727128557}{2178956295} a^{4} - \frac{26953615199}{184000753800} a^{2} + \frac{100433363}{1076027800}$, $\frac{1}{3621686837045400} a^{27} + \frac{20347}{190615096686600} a^{25} + \frac{1418701}{10060241214015} a^{23} + \frac{187350677}{190615096686600} a^{21} - \frac{16872007159}{3124837650600} a^{19} + \frac{1476966419279}{90542170926135} a^{17} + \frac{5481856196339}{21179455187400} a^{15} + \frac{300390164806777}{3621686837045400} a^{13} - \frac{1465510521428}{4765377417165} a^{11} + \frac{155780650537}{347204183400} a^{9} + \frac{1537258154837}{14904061057800} a^{7} + \frac{727128557}{6536868885} a^{5} - \frac{210954368999}{552002261400} a^{3} + \frac{100433363}{3228083400} a$, $\frac{1}{10865060511136200} a^{28} - \frac{1}{5432530255568100} a^{26} + \frac{15841}{16096385942424} a^{24} + \frac{4715046863}{10865060511136200} a^{22} + \frac{16288810417}{5432530255568100} a^{20} + \frac{107968749843601}{2173012102227240} a^{18} - \frac{118133288873653}{402409648560600} a^{16} + \frac{281231401734611}{5432530255568100} a^{14} - \frac{898026526144369}{2173012102227240} a^{12} - \frac{194254622736539}{402409648560600} a^{10} + \frac{7460180074273}{67068274760100} a^{8} + \frac{145893023177}{331201356840} a^{6} - \frac{563677858199}{1656006784200} a^{4} + \frac{7647941771}{92000376900} a^{2} - \frac{250683297}{4088905640}$, $\frac{1}{32595181533408600} a^{29} - \frac{1}{16297590766704300} a^{27} + \frac{15841}{48289157827272} a^{25} + \frac{4715046863}{32595181533408600} a^{23} + \frac{16288810417}{16297590766704300} a^{21} + \frac{107968749843601}{6519036306681720} a^{19} - \frac{118133288873653}{1207228945681800} a^{17} + \frac{281231401734611}{16297590766704300} a^{15} - \frac{898026526144369}{6519036306681720} a^{13} - \frac{194254622736539}{1207228945681800} a^{11} - \frac{59608094685827}{201204824280300} a^{9} + \frac{145893023177}{993604070520} a^{7} - \frac{563677858199}{4968020352600} a^{5} + \frac{7647941771}{276001130700} a^{3} - \frac{83561099}{4088905640} a$, $\frac{1}{97785544600225800} a^{30} - \frac{1}{48892772300112900} a^{28} + \frac{1}{3621686837045400} a^{26} - \frac{18925892}{12223193075028225} a^{24} + \frac{5047951177}{48892772300112900} a^{22} + \frac{325060708181}{97785544600225800} a^{20} + \frac{12584425038397}{452710854630675} a^{18} - \frac{14232622804879429}{48892772300112900} a^{16} - \frac{21840126673880957}{97785544600225800} a^{14} - \frac{194335761049729}{452710854630675} a^{12} + \frac{41726743474831}{201204824280300} a^{10} + \frac{6531979654501}{134136549520200} a^{8} - \frac{362885467879}{1863007632225} a^{6} + \frac{169051836191}{828003392100} a^{4} + \frac{18837951307}{184000753800} a^{2} + \frac{4489051209}{20444528200}$, $\frac{1}{293356633800677400} a^{31} - \frac{1}{146678316900338700} a^{29} + \frac{1}{10865060511136200} a^{27} - \frac{18925892}{36669579225084675} a^{25} + \frac{5047951177}{146678316900338700} a^{23} + \frac{325060708181}{293356633800677400} a^{21} + \frac{12584425038397}{1358132563892025} a^{19} - \frac{14232622804879429}{146678316900338700} a^{17} - \frac{119625671274106757}{293356633800677400} a^{15} - \frac{647046615680404}{1358132563892025} a^{13} + \frac{242931567755131}{603614472840900} a^{11} + \frac{6531979654501}{402409648560600} a^{9} - \frac{362885467879}{5589022896675} a^{7} + \frac{169051836191}{2484010176300} a^{5} - \frac{165162802493}{552002261400} a^{3} - \frac{15955476991}{61333584600} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{418440841}{32595181533408600} a^{31} - \frac{59777263}{3621686837045400} a^{29} + \frac{4602849251}{16297590766704300} a^{27} + \frac{32219944757}{16297590766704300} a^{25} + \frac{9298923751}{3621686837045400} a^{23} + \frac{21460037417}{1810843418522700} a^{21} - \frac{3677676551549}{16297590766704300} a^{19} - \frac{51095273099143}{32595181533408600} a^{17} - \frac{3677676551549}{1810843418522700} a^{15} + \frac{540790624110293}{16297590766704300} a^{13} + \frac{334334231959}{44712183173400} a^{11} + \frac{32219944757}{2484010176300} a^{9} + \frac{4602849251}{276001130700} a^{7} - \frac{179331789}{20444528200} a^{5} - \frac{643198803}{10222264100} a^{3} - \frac{1613986101}{20444528200} a \) (order $60$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |