Normalized defining polynomial
\( x^{32} - 31 x^{28} + 880 x^{24} - 24769 x^{20} + 696559 x^{16} - 2006289 x^{12} + 5773680 x^{8} - 16474671 x^{4} + 43046721 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{12} - \frac{3}{7} a^{8} + \frac{1}{7} a^{4} + \frac{2}{7}$, $\frac{1}{21} a^{17} + \frac{2}{21} a^{13} + \frac{4}{21} a^{9} + \frac{8}{21} a^{5} - \frac{5}{21} a$, $\frac{1}{63} a^{18} + \frac{23}{63} a^{14} + \frac{25}{63} a^{10} + \frac{8}{63} a^{6} - \frac{5}{63} a^{2}$, $\frac{1}{189} a^{19} + \frac{23}{189} a^{15} - \frac{38}{189} a^{11} + \frac{71}{189} a^{7} - \frac{68}{189} a^{3}$, $\frac{1}{394948953} a^{20} - \frac{19}{567} a^{16} - \frac{59}{567} a^{12} - \frac{34}{567} a^{8} + \frac{163}{567} a^{4} - \frac{2114446}{4875913}$, $\frac{1}{1184846859} a^{21} - \frac{19}{1701} a^{17} + \frac{508}{1701} a^{13} - \frac{601}{1701} a^{9} - \frac{404}{1701} a^{5} - \frac{6990359}{14627739} a$, $\frac{1}{3554540577} a^{22} - \frac{19}{5103} a^{18} + \frac{2209}{5103} a^{14} - \frac{601}{5103} a^{10} - \frac{2105}{5103} a^{6} - \frac{21618098}{43883217} a^{2}$, $\frac{1}{10663621731} a^{23} - \frac{19}{15309} a^{19} + \frac{7312}{15309} a^{15} + \frac{4502}{15309} a^{11} + \frac{2998}{15309} a^{7} - \frac{65501315}{131649651} a^{3}$, $\frac{1}{31990865193} a^{24} - \frac{31}{31990865193} a^{20} + \frac{61}{6561} a^{16} + \frac{2078}{6561} a^{12} + \frac{2812}{6561} a^{8} - \frac{56446048}{394948953} a^{4} - \frac{1392238}{4875913}$, $\frac{1}{95972595579} a^{25} - \frac{31}{95972595579} a^{21} + \frac{61}{19683} a^{17} + \frac{8639}{19683} a^{13} + \frac{2812}{19683} a^{9} + \frac{338502905}{1184846859} a^{5} - \frac{6268151}{14627739} a$, $\frac{1}{287917786737} a^{26} - \frac{31}{287917786737} a^{22} + \frac{61}{59049} a^{18} - \frac{11044}{59049} a^{14} - \frac{16871}{59049} a^{10} + \frac{1523349764}{3554540577} a^{6} - \frac{6268151}{43883217} a^{2}$, $\frac{1}{863753360211} a^{27} - \frac{31}{863753360211} a^{23} + \frac{61}{177147} a^{19} + \frac{48005}{177147} a^{15} - \frac{75920}{177147} a^{11} + \frac{1523349764}{10663621731} a^{7} + \frac{37615066}{131649651} a^{3}$, $\frac{1}{2591260080633} a^{28} - \frac{31}{2591260080633} a^{24} + \frac{880}{2591260080633} a^{20} - \frac{18259}{3720087} a^{16} + \frac{1}{3720087} a^{12} - \frac{24769}{31990865193} a^{8} + \frac{880}{394948953} a^{4} - \frac{31}{4875913}$, $\frac{1}{7773780241899} a^{29} - \frac{31}{7773780241899} a^{25} + \frac{880}{7773780241899} a^{21} - \frac{18259}{11160261} a^{17} + \frac{3720088}{11160261} a^{13} - \frac{31990889962}{95972595579} a^{9} + \frac{394949833}{1184846859} a^{5} - \frac{4875944}{14627739} a$, $\frac{1}{23321340725697} a^{30} - \frac{31}{23321340725697} a^{26} + \frac{880}{23321340725697} a^{22} - \frac{18259}{33480783} a^{18} + \frac{14880349}{33480783} a^{14} + \frac{63981705617}{287917786737} a^{10} + \frac{394949833}{3554540577} a^{6} - \frac{19503683}{43883217} a^{2}$, $\frac{1}{69964022177091} a^{31} - \frac{31}{69964022177091} a^{27} + \frac{880}{69964022177091} a^{23} - \frac{18259}{100442349} a^{19} + \frac{14880349}{100442349} a^{15} + \frac{351899492354}{863753360211} a^{11} + \frac{3949490410}{10663621731} a^{7} - \frac{63386900}{131649651} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{97}{10663621731} a^{27} - \frac{1674257764}{10663621731} a^{7} \) (order $40$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |