Normalized defining polynomial
\( x^{32} - x^{31} - 11 x^{30} + 22 x^{29} + 125 x^{28} - 275 x^{27} - 94 x^{26} + 1509 x^{25} + 761 x^{24} - 9994 x^{23} + 7117 x^{22} + 14365 x^{21} - 21524 x^{20} - 49605 x^{19} + 175483 x^{18} - 33646 x^{17} + 320975 x^{16} + 904191 x^{15} - 1392802 x^{14} - 8705985 x^{13} - 464629 x^{12} + 21128450 x^{11} + 15851367 x^{10} - 21617481 x^{9} - 24556589 x^{8} - 1571294 x^{7} + 11656076 x^{6} + 28090720 x^{5} + 24696960 x^{4} - 3964352 x^{3} + 7184704 x^{2} + 33890176 x + 18800896 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72742794030721358896825924818930661340866148471832275390625=3^{16}\cdot 5^{24}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(128,·)$, $\chi_{255}(1,·)$, $\chi_{255}(2,·)$, $\chi_{255}(4,·)$, $\chi_{255}(8,·)$, $\chi_{255}(16,·)$, $\chi_{255}(149,·)$, $\chi_{255}(154,·)$, $\chi_{255}(32,·)$, $\chi_{255}(166,·)$, $\chi_{255}(169,·)$, $\chi_{255}(43,·)$, $\chi_{255}(172,·)$, $\chi_{255}(178,·)$, $\chi_{255}(53,·)$, $\chi_{255}(191,·)$, $\chi_{255}(64,·)$, $\chi_{255}(202,·)$, $\chi_{255}(77,·)$, $\chi_{255}(83,·)$, $\chi_{255}(212,·)$, $\chi_{255}(86,·)$, $\chi_{255}(89,·)$, $\chi_{255}(223,·)$, $\chi_{255}(101,·)$, $\chi_{255}(106,·)$, $\chi_{255}(239,·)$, $\chi_{255}(247,·)$, $\chi_{255}(251,·)$, $\chi_{255}(253,·)$, $\chi_{255}(254,·)$, $\chi_{255}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{8} + \frac{1}{8} a^{5}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{9} - \frac{7}{16} a^{3} - \frac{1}{2}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{17} + \frac{1}{16} a^{11} - \frac{3}{32} a^{5}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{12} - \frac{1}{8} a^{9} + \frac{1}{32} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{13} - \frac{1}{8} a^{10} + \frac{1}{32} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{64} a^{20} - \frac{1}{64} a^{17} + \frac{1}{32} a^{14} + \frac{3}{32} a^{11} + \frac{5}{64} a^{8} - \frac{5}{64} a^{5} - \frac{1}{8} a^{2}$, $\frac{1}{64} a^{21} - \frac{1}{64} a^{18} - \frac{1}{32} a^{15} - \frac{1}{32} a^{12} + \frac{5}{64} a^{9} + \frac{3}{64} a^{6} + \frac{7}{16} a^{3} - \frac{1}{2}$, $\frac{1}{64} a^{22} - \frac{1}{64} a^{19} - \frac{1}{32} a^{13} - \frac{7}{64} a^{10} - \frac{13}{64} a^{7} + \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{64} a^{23} - \frac{1}{64} a^{17} - \frac{1}{64} a^{11} - \frac{1}{8} a^{8} + \frac{1}{64} a^{5} + \frac{1}{8} a^{2}$, $\frac{1}{128} a^{24} + \frac{1}{128} a^{18} - \frac{5}{128} a^{12} + \frac{3}{128} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{256} a^{25} - \frac{1}{256} a^{24} + \frac{1}{256} a^{19} - \frac{1}{256} a^{18} - \frac{1}{16} a^{14} - \frac{5}{256} a^{13} - \frac{11}{256} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{61}{256} a^{7} - \frac{51}{256} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{512} a^{26} - \frac{1}{512} a^{24} - \frac{1}{128} a^{23} + \frac{1}{512} a^{20} - \frac{1}{512} a^{18} - \frac{1}{128} a^{17} - \frac{1}{32} a^{15} + \frac{11}{512} a^{14} - \frac{1}{32} a^{13} - \frac{27}{512} a^{12} - \frac{7}{128} a^{11} + \frac{3}{32} a^{10} - \frac{1}{16} a^{9} + \frac{19}{512} a^{8} + \frac{1}{32} a^{7} + \frac{93}{512} a^{6} - \frac{23}{128} a^{5} - \frac{3}{32} a^{4} - \frac{5}{32} a^{3} + \frac{3}{16} a^{2} + \frac{1}{8}$, $\frac{1}{512} a^{27} - \frac{1}{512} a^{25} + \frac{1}{512} a^{21} - \frac{1}{512} a^{19} + \frac{11}{512} a^{15} - \frac{1}{32} a^{14} - \frac{27}{512} a^{13} + \frac{1}{32} a^{12} + \frac{3}{32} a^{11} - \frac{45}{512} a^{9} + \frac{1}{32} a^{8} - \frac{35}{512} a^{7} + \frac{7}{32} a^{6} - \frac{3}{32} a^{5} - \frac{1}{4} a^{4} + \frac{5}{16} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{4602368} a^{28} - \frac{59}{575296} a^{27} - \frac{535}{2301184} a^{26} - \frac{1935}{1150592} a^{25} + \frac{6209}{4602368} a^{24} + \frac{1033}{1150592} a^{23} - \frac{7943}{4602368} a^{22} + \frac{933}{143824} a^{21} + \frac{14453}{2301184} a^{20} - \frac{7201}{1150592} a^{19} + \frac{52921}{4602368} a^{18} - \frac{10665}{1150592} a^{17} - \frac{3205}{4602368} a^{16} + \frac{165}{5696} a^{15} - \frac{64237}{2301184} a^{14} - \frac{5441}{1150592} a^{13} - \frac{32773}{4602368} a^{12} - \frac{4997}{1150592} a^{11} - \frac{448517}{4602368} a^{10} - \frac{831}{35956} a^{9} + \frac{189631}{2301184} a^{8} - \frac{117807}{1150592} a^{7} + \frac{1149899}{4602368} a^{6} - \frac{154587}{1150592} a^{5} + \frac{10737}{287648} a^{4} - \frac{112377}{287648} a^{3} - \frac{47331}{143824} a^{2} - \frac{6003}{17978} a + \frac{15675}{71912}$, $\frac{1}{9204736} a^{29} - \frac{1}{9204736} a^{28} - \frac{3823}{4602368} a^{27} + \frac{663}{9204736} a^{26} - \frac{7775}{9204736} a^{25} + \frac{3573}{4602368} a^{24} - \frac{39351}{9204736} a^{23} + \frac{28127}{9204736} a^{22} + \frac{34121}{4602368} a^{21} + \frac{3543}{9204736} a^{20} - \frac{102175}{9204736} a^{19} + \frac{50229}{4602368} a^{18} - \frac{68573}{9204736} a^{17} + \frac{62005}{9204736} a^{16} - \frac{56965}{4602368} a^{15} + \frac{331501}{9204736} a^{14} - \frac{395717}{9204736} a^{13} - \frac{280649}{4602368} a^{12} - \frac{118789}{9204736} a^{11} + \frac{1070173}{9204736} a^{10} - \frac{445909}{4602368} a^{9} + \frac{62117}{9204736} a^{8} - \frac{1502845}{9204736} a^{7} - \frac{108321}{4602368} a^{6} + \frac{268883}{1150592} a^{5} - \frac{26167}{575296} a^{4} - \frac{503}{17978} a^{3} - \frac{13891}{35956} a^{2} + \frac{32163}{143824} a - \frac{7511}{71912}$, $\frac{1}{15127730412585778567476224} a^{30} - \frac{115517553030792851}{15127730412585778567476224} a^{29} - \frac{449907427870601859}{7563865206292889283738112} a^{28} - \frac{14766938582716358224671}{15127730412585778567476224} a^{27} - \frac{14470041742338218754237}{15127730412585778567476224} a^{26} - \frac{11913163529448032096865}{7563865206292889283738112} a^{25} - \frac{41317223986620867349445}{15127730412585778567476224} a^{24} - \frac{5444188611100756101419}{15127730412585778567476224} a^{23} - \frac{50451461053937917432555}{7563865206292889283738112} a^{22} + \frac{27206274912104532507057}{15127730412585778567476224} a^{21} - \frac{14940561023826820618013}{15127730412585778567476224} a^{20} + \frac{93000313313639389078607}{7563865206292889283738112} a^{19} - \frac{59055744679313530096283}{15127730412585778567476224} a^{18} + \frac{220684528495119405956279}{15127730412585778567476224} a^{17} - \frac{60414489124465316861553}{7563865206292889283738112} a^{16} + \frac{469690557900121309043963}{15127730412585778567476224} a^{15} + \frac{13514274148497304966765}{285428875709165633348608} a^{14} + \frac{191505561591301429837445}{7563865206292889283738112} a^{13} - \frac{95026359597023039955743}{15127730412585778567476224} a^{12} - \frac{1392381119774916658693697}{15127730412585778567476224} a^{11} - \frac{552794972019793834513041}{7563865206292889283738112} a^{10} + \frac{387441535890979479468307}{15127730412585778567476224} a^{9} - \frac{1055075380983359865377463}{15127730412585778567476224} a^{8} + \frac{35221807052502033161447}{175903842006811378691584} a^{7} + \frac{1547195637208216499088511}{7563865206292889283738112} a^{6} + \frac{11399855746332200372809}{1890966301573222320934528} a^{5} + \frac{47978190725290881131895}{472741575393305580233632} a^{4} - \frac{113816599311456539345229}{472741575393305580233632} a^{3} - \frac{10814825509885562502523}{59092696924163197529204} a^{2} + \frac{45362979919647550020407}{118185393848326395058408} a - \frac{176550136022501900963}{436108464384968247448}$, $\frac{1}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{31} + \frac{39762103271343174356927959331420333512453021905}{18979063356084915356238107225894089988917626616825913366800548861670076416} a^{30} + \frac{571201665957475744368027877260190846062117329563975007550145496989}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{29} - \frac{11697511646716407593514285642944080589766785286613788006856286408485}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{28} + \frac{6606799234575229590626422584623749317149993759026652379433789639515909}{9489531678042457678119053612947044994458813308412956683400274430835038208} a^{27} - \frac{31824376370337194966337910735059111494294595056908202422818705500619043}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{26} - \frac{182079310336063109218951242652470149572682112209825013554575396699304729}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{25} - \frac{77851082597375813838783684152228886515511017064017892305498671864201207}{37958126712169830712476214451788179977835253233651826733601097723340152832} a^{24} - \frac{281456021768221208239447750250431616166431958417781413291660979501043939}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{23} + \frac{356748032549832967647479721757525992085077113041296747048350572896091451}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{22} - \frac{13574634961586608375869632297001063479624143669391492051970044163469}{2188545128699828800304209781583728089127955098803726172370911999731328} a^{21} + \frac{199165845512811057341398647763688983896730958711674223672788340909772861}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{20} + \frac{476102145755452776477064768838442172735251511969791191702521499602120081}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{19} - \frac{17547369864445790517469738517460892044779812823512265689306756346916387}{37958126712169830712476214451788179977835253233651826733601097723340152832} a^{18} - \frac{2323861603004373068287178578585906340686493310862599103150023951598222801}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{17} + \frac{1127656828321771204951412401891150552774774939568386946803975704462815481}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{16} - \frac{34251382537418804647685834206839944824599183309103385463284670728029249}{9489531678042457678119053612947044994458813308412956683400274430835038208} a^{15} - \frac{6002356785762918048258423952247049869930667923672924574968192277623544369}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{14} + \frac{3727309894426644517352180600422397003405749009288849118984489983956887077}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{13} + \frac{1861270717198263022126393802384633019561709507970631828301247182544083771}{37958126712169830712476214451788179977835253233651826733601097723340152832} a^{12} - \frac{95877979987752429484429554383055141940907169692490005070302388632053559}{794934590830781795025679883807082303200738287615745062483792622478327808} a^{11} + \frac{6290439808775868861839162590573693773310368916364488379674826358459706225}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{10} + \frac{206109929190574454630644486298785548959239222406309053655212536698757427}{2372382919510614419529763403236761248614703327103239170850068607708759552} a^{9} - \frac{16331625852922975346880227632632606500641049742117102060171121813068919593}{151832506848679322849904857807152719911341012934607306934404390893360611328} a^{8} - \frac{13535320671924391777336021104497508774667255160535371752162590710549093647}{75916253424339661424952428903576359955670506467303653467202195446680305664} a^{7} - \frac{2412400221659919710346333873068797545929527694303819462250456141379551619}{37958126712169830712476214451788179977835253233651826733601097723340152832} a^{6} - \frac{795533777512728142493461058874876934798197594635644909654515716766820135}{4744765839021228839059526806473522497229406654206478341700137215417519104} a^{5} + \frac{230574519216947761098270354230333094160073161554866317544183321969600295}{1186191459755307209764881701618380624307351663551619585425034303854379776} a^{4} - \frac{112819668074912336678543877401094749979549332760859096074091571177845719}{296547864938826802441220425404595156076837915887904896356258575963594944} a^{3} + \frac{128860726817266234986529289749243890430383645192735743376928718156988993}{2372382919510614419529763403236761248614703327103239170850068607708759552} a^{2} - \frac{11593826038429242258362214166432278587400768518085253569284613492098329}{1186191459755307209764881701618380624307351663551619585425034303854379776} a - \frac{763841603087058958092226462229509421918693129373246240705039614568503}{2188545128699828800304209781583728089127955098803726172370911999731328}$
Class group and class number
$C_{2}\times C_{8760}$, which has order $17520$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{657086522963876357752357180103109886947710301498087}{6347527028096214749375865632248157525209282966626646065152} a^{31} + \frac{198089833044375900276681898849353788890920495165213}{793440878512026843671983204031019690651160370828330758144} a^{30} + \frac{5363382593499191810303096248093222056522670407729941}{6347527028096214749375865632248157525209282966626646065152} a^{29} - \frac{22818877709758050576101964062486822541536586328821565}{6347527028096214749375865632248157525209282966626646065152} a^{28} - \frac{3310380077898263986615432312827880846869363665947561}{396720439256013421835991602015509845325580185414165379072} a^{27} + \frac{267065549892646616430612952841071623073530236695687317}{6347527028096214749375865632248157525209282966626646065152} a^{26} - \frac{283663254484817028983535480287806892646310861457247185}{6347527028096214749375865632248157525209282966626646065152} a^{25} - \frac{181611215872741068212982100463467493145586263494406775}{1586881757024053687343966408062039381302320741656661516288} a^{24} + \frac{665676030874397632896851649074786011495659762787581077}{6347527028096214749375865632248157525209282966626646065152} a^{23} + \frac{5999274116639353411020096427508481906036965650452084771}{6347527028096214749375865632248157525209282966626646065152} a^{22} - \frac{416315378919535389760936937583857518873018227173509035}{198360219628006710917995801007754922662790092707082689536} a^{21} + \frac{6131388654539596390310570038264851636676033517177795829}{6347527028096214749375865632248157525209282966626646065152} a^{20} + \frac{11972223987899263176939981710738875158438883021043971785}{6347527028096214749375865632248157525209282966626646065152} a^{19} + \frac{71514265471474608727055043927354494589038356210726247}{36904226907536132263813172280512543751216761433875849216} a^{18} - \frac{136478844484578459002108091640650400141396406366242407209}{6347527028096214749375865632248157525209282966626646065152} a^{17} + \frac{204088198438157544272183400055290465898720148333897138545}{6347527028096214749375865632248157525209282966626646065152} a^{16} - \frac{26702058225341597338373521164907956468616132482566892571}{396720439256013421835991602015509845325580185414165379072} a^{15} - \frac{89450815413451995210665969474640547227101244914794227657}{6347527028096214749375865632248157525209282966626646065152} a^{14} + \frac{1293670923127189052844457564503760334190033352184173924733}{6347527028096214749375865632248157525209282966626646065152} a^{13} + \frac{989546943239048462290957791304324296086599395293743898811}{1586881757024053687343966408062039381302320741656661516288} a^{12} - \frac{30563578416100012887058842044333931948855628139689095327}{33233125801550862562177306975121243587483156893333225472} a^{11} - \frac{7985772305795335088180152042813006516916885706955332895191}{6347527028096214749375865632248157525209282966626646065152} a^{10} + \frac{2281944244564557596299810076070253948014320884112310551}{4613028363442016532976646535064067968902095179234481152} a^{9} + \frac{13735179644498090285589039168058206461045310963745758621183}{6347527028096214749375865632248157525209282966626646065152} a^{8} - \frac{1329707116919508401717574919856793835487207635189658661767}{3173763514048107374687932816124078762604641483313323032576} a^{7} - \frac{259227216163361422178976367673902113071789234701513720203}{1586881757024053687343966408062039381302320741656661516288} a^{6} - \frac{200275781746886197810466864932980626664366187488776646815}{198360219628006710917995801007754922662790092707082689536} a^{5} - \frac{81420677440999307558399358071012524529243017075301129141}{49590054907001677729498950251938730665697523176770672384} a^{4} + \frac{3621934332213683209926021211996821954024648058174490383}{12397513726750419432374737562984682666424380794192668096} a^{3} + \frac{93278827355879248489973154198656796700011628993432195801}{99180109814003355458997900503877461331395046353541344768} a^{2} - \frac{66508149048790161345910539109211099058420310060015743873}{49590054907001677729498950251938730665697523176770672384} a - \frac{62125854269166979955366737349386131713195075201589439}{91494566249080586216787731092137879457006500326145152} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162037216252175.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{16}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||