Normalized defining polynomial
\( x^{32} - 23 x^{30} + 114 x^{28} + 675 x^{26} - 5812 x^{24} + 2385 x^{22} + 62416 x^{20} - 141927 x^{18} + 763268 x^{16} - 6766397 x^{14} + 26657386 x^{12} - 48774875 x^{10} + 42559893 x^{8} - 31754380 x^{6} + 49669184 x^{4} - 46720448 x^{2} + 18800896 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7257879674078131427258907485712138496000000000000000000000000=2^{32}\cdot 5^{24}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(259,·)$, $\chi_{340}(263,·)$, $\chi_{340}(271,·)$, $\chi_{340}(149,·)$, $\chi_{340}(287,·)$, $\chi_{340}(169,·)$, $\chi_{340}(43,·)$, $\chi_{340}(257,·)$, $\chi_{340}(53,·)$, $\chi_{340}(191,·)$, $\chi_{340}(69,·)$, $\chi_{340}(247,·)$, $\chi_{340}(77,·)$, $\chi_{340}(81,·)$, $\chi_{340}(83,·)$, $\chi_{340}(213,·)$, $\chi_{340}(87,·)$, $\chi_{340}(89,·)$, $\chi_{340}(93,·)$, $\chi_{340}(223,·)$, $\chi_{340}(101,·)$, $\chi_{340}(171,·)$, $\chi_{340}(239,·)$, $\chi_{340}(319,·)$, $\chi_{340}(339,·)$, $\chi_{340}(117,·)$, $\chi_{340}(297,·)$, $\chi_{340}(251,·)$, $\chi_{340}(21,·)$, $\chi_{340}(253,·)$, $\chi_{340}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{6}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{10} - \frac{3}{16} a^{4}$, $\frac{1}{32} a^{17} - \frac{1}{16} a^{11} - \frac{3}{32} a^{5}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{12} - \frac{3}{32} a^{6}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{13} - \frac{3}{32} a^{7}$, $\frac{1}{32} a^{20} - \frac{1}{16} a^{14} - \frac{3}{32} a^{8}$, $\frac{1}{32} a^{21} - \frac{1}{16} a^{15} - \frac{3}{32} a^{9}$, $\frac{1}{128} a^{22} - \frac{1}{128} a^{20} + \frac{1}{128} a^{18} + \frac{1}{64} a^{16} + \frac{3}{64} a^{14} + \frac{5}{64} a^{12} - \frac{7}{128} a^{10} + \frac{7}{128} a^{8} + \frac{9}{128} a^{6} + \frac{7}{16} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{128} a^{23} - \frac{1}{128} a^{21} + \frac{1}{128} a^{19} - \frac{1}{64} a^{17} + \frac{3}{64} a^{15} - \frac{3}{64} a^{13} - \frac{15}{128} a^{11} - \frac{9}{128} a^{9} - \frac{7}{128} a^{7} + \frac{13}{32} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{24} - \frac{1}{128} a^{18} - \frac{5}{128} a^{12} + \frac{61}{128} a^{6} - \frac{1}{2}$, $\frac{1}{128} a^{25} - \frac{1}{128} a^{19} - \frac{5}{128} a^{13} - \frac{3}{128} a^{7}$, $\frac{1}{51712} a^{26} + \frac{67}{25856} a^{24} - \frac{53}{51712} a^{22} + \frac{49}{3232} a^{20} - \frac{3}{51712} a^{18} + \frac{287}{25856} a^{16} - \frac{795}{51712} a^{14} + \frac{167}{1616} a^{12} - \frac{6045}{51712} a^{10} + \frac{235}{25856} a^{8} + \frac{11753}{51712} a^{6} + \frac{1147}{3232} a^{4} - \frac{399}{808} a^{2} + \frac{33}{808}$, $\frac{1}{103424} a^{27} + \frac{67}{51712} a^{25} - \frac{53}{103424} a^{23} - \frac{13}{1616} a^{21} + \frac{1613}{103424} a^{19} + \frac{287}{51712} a^{17} + \frac{2437}{103424} a^{15} + \frac{33}{1616} a^{13} - \frac{6045}{103424} a^{11} + \frac{2659}{51712} a^{9} + \frac{6905}{103424} a^{7} - \frac{2085}{6464} a^{5} - \frac{399}{1616} a^{3} + \frac{33}{1616} a$, $\frac{1}{9204736} a^{28} + \frac{17}{2301184} a^{26} - \frac{13745}{9204736} a^{24} + \frac{6181}{4602368} a^{22} - \frac{4883}{9204736} a^{20} + \frac{9485}{2301184} a^{18} + \frac{274825}{9204736} a^{16} - \frac{11493}{4602368} a^{14} - \frac{696493}{9204736} a^{12} - \frac{24635}{287648} a^{10} + \frac{396045}{9204736} a^{8} + \frac{2249751}{4602368} a^{6} + \frac{73057}{287648} a^{4} + \frac{52627}{143824} a^{2} - \frac{23713}{71912}$, $\frac{1}{2494483456} a^{29} - \frac{4505}{1247241728} a^{27} + \frac{3947467}{2494483456} a^{25} - \frac{1160817}{311810432} a^{23} - \frac{28983283}{2494483456} a^{21} - \frac{17226293}{1247241728} a^{19} + \frac{29006517}{2494483456} a^{17} + \frac{15713125}{311810432} a^{15} + \frac{115900627}{2494483456} a^{13} - \frac{28471969}{1247241728} a^{11} + \frac{161814633}{2494483456} a^{9} + \frac{47344153}{311810432} a^{7} - \frac{11169061}{38976304} a^{5} + \frac{15000889}{38976304} a^{3} - \frac{2290625}{4872038} a$, $\frac{1}{1268935776296825001311684613493021811227761664} a^{30} - \frac{1329254800497669580601372934695619651}{79308486018551562581980288343313863201735104} a^{28} - \frac{10521198485574150513917766077513555282623}{1268935776296825001311684613493021811227761664} a^{26} - \frac{497756709633233045056390794959146113848711}{634467888148412500655842306746510905613880832} a^{24} + \frac{3979153693441918705861956076150742105195675}{1268935776296825001311684613493021811227761664} a^{22} - \frac{529671449994818427747489247850132661248963}{79308486018551562581980288343313863201735104} a^{20} + \frac{3274348873113634926114806427458003223804619}{1268935776296825001311684613493021811227761664} a^{18} + \frac{16396232208382676461564994514714248610021871}{634467888148412500655842306746510905613880832} a^{16} - \frac{24455367643580935552400859228570357187856219}{1268935776296825001311684613493021811227761664} a^{14} + \frac{34395324719526773973192816022221168057992271}{317233944074206250327921153373255452806940416} a^{12} - \frac{89717587112091945901439094496207569981835661}{1268935776296825001311684613493021811227761664} a^{10} + \frac{77805814365025568585243311767201384269798891}{634467888148412500655842306746510905613880832} a^{8} + \frac{207680520726360960103780548692328491163452945}{634467888148412500655842306746510905613880832} a^{6} + \frac{15026849093874532785931746614327732824510393}{39654243009275781290990144171656931600867552} a^{4} - \frac{566276880754664164392130526466485783416355}{2478390188079736330686884010728558225054222} a^{2} + \frac{1145525733883462108069147550482818134735}{36581404990106809309031498313336652768328}$, $\frac{1}{1268935776296825001311684613493021811227761664} a^{31} + \frac{48594602919341367894287750881890441}{634467888148412500655842306746510905613880832} a^{29} + \frac{694393349523961895852688089314411103073}{158616972037103125163960576686627726403470208} a^{27} + \frac{1121685688893645761220913177374914879140017}{634467888148412500655842306746510905613880832} a^{25} + \frac{675003931473109744558704495114977099626671}{317233944074206250327921153373255452806940416} a^{23} - \frac{9037692607008522903017027358236169717026087}{634467888148412500655842306746510905613880832} a^{21} + \frac{81723807573728026154254762671992305743571}{634467888148412500655842306746510905613880832} a^{19} - \frac{504949689654563257586715141066486452300559}{634467888148412500655842306746510905613880832} a^{17} + \frac{14177606214575111362383837096770172748460167}{317233944074206250327921153373255452806940416} a^{15} - \frac{14386458014037279724270520251626064263416147}{634467888148412500655842306746510905613880832} a^{13} + \frac{12444692122327090505119778154920467917472909}{158616972037103125163960576686627726403470208} a^{11} - \frac{62846164587830075387295370832886225487907175}{634467888148412500655842306746510905613880832} a^{9} + \frac{14363444190579853959756285281230108215526101}{1268935776296825001311684613493021811227761664} a^{7} + \frac{18634942744731185293599389601975059806607611}{79308486018551562581980288343313863201735104} a^{5} + \frac{108879466527114310351264118822693336907601}{222776646119526861185337888604814222476784} a^{3} + \frac{2614298523474963871778905648284958480127173}{19827121504637890645495072085828465800433776} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{584}$, which has order $18688$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{123117231451970155938895}{2678988296768260150913075097088} a^{31} + \frac{3013765236327288742224165}{2678988296768260150913075097088} a^{29} - \frac{17643082509177063029364505}{2678988296768260150913075097088} a^{27} - \frac{74470220171768369341026887}{2678988296768260150913075097088} a^{25} + \frac{878853544841045216879648875}{2678988296768260150913075097088} a^{23} - \frac{869340607843095393521312535}{2678988296768260150913075097088} a^{21} - \frac{9630437621743422773600958575}{2678988296768260150913075097088} a^{19} + \frac{24964986897666436817305443975}{2678988296768260150913075097088} a^{17} - \frac{90437044346675198796667343299}{2678988296768260150913075097088} a^{15} + \frac{953946445946078058422510195995}{2678988296768260150913075097088} a^{13} - \frac{4126389398017220820862564487935}{2678988296768260150913075097088} a^{11} + \frac{7747856241638992822657826157755}{2678988296768260150913075097088} a^{9} - \frac{2684638140625113230047366258295}{1339494148384130075456537548544} a^{7} + \frac{54007511486541511242685025739}{41859192137004064858016798392} a^{5} - \frac{67141767460283445036844171225}{20929596068502032429008399196} a^{3} + \frac{34640929156817233429116347745}{20929596068502032429008399196} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 218851674878883.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||