Normalized defining polynomial
\( x^{32} - 49 x^{28} + 1105 x^{24} + 9359 x^{20} - 1890671 x^{16} + 12129264 x^{12} + 1855975680 x^{8} - 106662334464 x^{4} + 2821109907456 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{12} - \frac{2}{11} a^{8} + \frac{5}{11} a^{4} + \frac{4}{11}$, $\frac{1}{66} a^{17} - \frac{19}{66} a^{13} + \frac{31}{66} a^{9} + \frac{5}{66} a^{5} - \frac{29}{66} a$, $\frac{1}{396} a^{18} - \frac{85}{396} a^{14} + \frac{97}{396} a^{10} + \frac{71}{396} a^{6} - \frac{95}{396} a^{2}$, $\frac{1}{2376} a^{19} - \frac{481}{2376} a^{15} + \frac{889}{2376} a^{11} + \frac{71}{2376} a^{7} - \frac{887}{2376} a^{3}$, $\frac{1}{26953405776} a^{20} + \frac{289}{14256} a^{16} - \frac{1201}{14256} a^{12} - \frac{2063}{14256} a^{8} + \frac{3887}{14256} a^{4} - \frac{3771983}{20797381}$, $\frac{1}{161720434656} a^{21} + \frac{289}{85536} a^{17} + \frac{41567}{85536} a^{13} - \frac{16319}{85536} a^{9} - \frac{38881}{85536} a^{5} - \frac{45366745}{124784286} a$, $\frac{1}{970322607936} a^{22} + \frac{289}{513216} a^{18} - \frac{215041}{513216} a^{14} - \frac{101855}{513216} a^{10} - \frac{124417}{513216} a^{6} - \frac{294935317}{748705716} a^{2}$, $\frac{1}{5821935647616} a^{23} + \frac{289}{3079296} a^{19} + \frac{1324607}{3079296} a^{15} - \frac{615071}{3079296} a^{11} + \frac{902015}{3079296} a^{7} + \frac{453770399}{4492234296} a^{3}$, $\frac{1}{34931613885696} a^{24} - \frac{49}{34931613885696} a^{20} - \frac{43969}{18475776} a^{16} + \frac{1779937}{18475776} a^{12} + \frac{6718463}{18475776} a^{8} + \frac{2450318975}{26953405776} a^{4} + \frac{515738}{1890671}$, $\frac{1}{209589683314176} a^{25} - \frac{49}{209589683314176} a^{21} - \frac{43969}{110854656} a^{17} + \frac{1779937}{110854656} a^{13} - \frac{30233089}{110854656} a^{9} + \frac{29403724751}{161720434656} a^{5} - \frac{5156275}{11344026} a$, $\frac{1}{1257538099885056} a^{26} - \frac{49}{1257538099885056} a^{22} - \frac{43969}{665127936} a^{18} + \frac{223489249}{665127936} a^{14} - \frac{251942401}{665127936} a^{10} + \frac{191124159407}{970322607936} a^{6} + \frac{17531777}{68064156} a^{2}$, $\frac{1}{7545228599310336} a^{27} - \frac{49}{7545228599310336} a^{23} - \frac{43969}{3990767616} a^{19} - \frac{441638687}{3990767616} a^{15} + \frac{1743441407}{3990767616} a^{11} - \frac{779198448529}{5821935647616} a^{7} + \frac{153660089}{408384936} a^{3}$, $\frac{1}{45271371595862016} a^{28} - \frac{49}{45271371595862016} a^{24} + \frac{1105}{45271371595862016} a^{20} - \frac{754047263}{23944605696} a^{16} + \frac{4353564671}{23944605696} a^{12} - \frac{15878006302321}{34931613885696} a^{8} - \frac{9801237359}{26953405776} a^{4} - \frac{1890720}{20797381}$, $\frac{1}{271628229575172096} a^{29} - \frac{49}{271628229575172096} a^{25} + \frac{1105}{271628229575172096} a^{21} - \frac{754047263}{143667634176} a^{17} - \frac{67480252417}{143667634176} a^{13} - \frac{15878006302321}{209589683314176} a^{9} + \frac{71058979969}{161720434656} a^{5} - \frac{21742741}{62392143} a$, $\frac{1}{1629769377451032576} a^{30} - \frac{49}{1629769377451032576} a^{26} + \frac{1105}{1629769377451032576} a^{22} - \frac{754047263}{862005805056} a^{18} - \frac{211147886593}{862005805056} a^{14} - \frac{225467689616497}{1257538099885056} a^{10} + \frac{232779414625}{970322607936} a^{6} - \frac{146527027}{374352858} a^{2}$, $\frac{1}{9778616264706195456} a^{31} - \frac{49}{9778616264706195456} a^{27} + \frac{1105}{9778616264706195456} a^{23} - \frac{754047263}{5172034830336} a^{19} - \frac{211147886593}{5172034830336} a^{15} - \frac{2740543889386609}{7545228599310336} a^{11} - \frac{1707865801247}{5821935647616} a^{7} + \frac{227825831}{2246117148} a^{3}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{365}{209589683314176} a^{29} - \frac{75943352179}{209589683314176} a^{9} \) (order $40$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |