Normalized defining polynomial
\( x^{32} - 8 x^{31} + 22 x^{30} - 40 x^{29} + 178 x^{28} - 712 x^{27} + 1264 x^{26} + 844 x^{25} - 9359 x^{24} + 23304 x^{23} - 31738 x^{22} + 20712 x^{21} + 4242 x^{20} - 53384 x^{19} + 309318 x^{18} - 1090772 x^{17} + 2225756 x^{16} - 2949980 x^{15} + 2866688 x^{14} - 2095500 x^{13} + 1173576 x^{12} - 535544 x^{11} + 258862 x^{10} - 119572 x^{9} + 42617 x^{8} - 13676 x^{7} + 3860 x^{6} - 916 x^{5} + 264 x^{4} - 80 x^{3} + 20 x^{2} - 4 x + 1 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(6649076259173893054484111016591360000000000000000\)\(\medspace = 2^{72}\cdot 3^{16}\cdot 5^{16}\cdot 11^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.55$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{5} a^{22} - \frac{1}{5} a^{21} + \frac{2}{5} a^{20} + \frac{2}{5} a^{19} - \frac{1}{5} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{23} + \frac{1}{5} a^{21} - \frac{1}{5} a^{20} + \frac{1}{5} a^{19} - \frac{1}{5} a^{16} + \frac{2}{5} a^{15} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{24} + \frac{2}{5} a^{20} - \frac{1}{5} a^{19} - \frac{2}{5} a^{18} - \frac{1}{5} a^{17} - \frac{1}{5} a^{16} + \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{10}$, $\frac{1}{10} a^{25} + \frac{2}{5} a^{21} - \frac{1}{5} a^{20} - \frac{2}{5} a^{19} - \frac{1}{5} a^{18} - \frac{1}{5} a^{17} + \frac{1}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a$, $\frac{1}{4130} a^{26} + \frac{76}{2065} a^{25} + \frac{171}{4130} a^{24} - \frac{157}{2065} a^{23} - \frac{21}{295} a^{22} - \frac{185}{413} a^{21} + \frac{802}{2065} a^{20} - \frac{356}{2065} a^{19} - \frac{271}{2065} a^{18} + \frac{783}{2065} a^{17} - \frac{879}{2065} a^{16} - \frac{72}{295} a^{15} + \frac{729}{2065} a^{14} + \frac{136}{295} a^{13} + \frac{642}{2065} a^{12} + \frac{34}{413} a^{11} - \frac{393}{2065} a^{10} + \frac{272}{2065} a^{9} + \frac{43}{295} a^{8} + \frac{206}{2065} a^{7} - \frac{418}{2065} a^{6} - \frac{111}{295} a^{5} + \frac{37}{413} a^{4} + \frac{334}{2065} a^{3} - \frac{1927}{4130} a^{2} + \frac{593}{2065} a + \frac{667}{4130}$, $\frac{1}{4130} a^{27} + \frac{39}{826} a^{25} + \frac{9}{295} a^{24} + \frac{176}{2065} a^{23} - \frac{57}{2065} a^{22} - \frac{257}{2065} a^{21} - \frac{85}{413} a^{20} - \frac{135}{413} a^{19} - \frac{151}{2065} a^{18} - \frac{951}{2065} a^{17} + \frac{16}{35} a^{16} - \frac{307}{2065} a^{15} + \frac{828}{2065} a^{14} - \frac{338}{2065} a^{13} - \frac{772}{2065} a^{12} + \frac{199}{2065} a^{11} - \frac{58}{413} a^{10} + \frac{257}{2065} a^{9} + \frac{142}{413} a^{8} - \frac{151}{413} a^{7} - \frac{17}{2065} a^{6} - \frac{242}{2065} a^{5} - \frac{528}{2065} a^{4} + \frac{1439}{4130} a^{3} - \frac{396}{2065} a^{2} + \frac{1289}{4130} a + \frac{104}{413}$, $\frac{1}{20650} a^{28} - \frac{1}{20650} a^{27} + \frac{1}{10325} a^{26} + \frac{372}{10325} a^{25} - \frac{563}{20650} a^{24} + \frac{149}{2065} a^{23} + \frac{87}{10325} a^{22} - \frac{71}{175} a^{21} + \frac{154}{1475} a^{20} + \frac{674}{10325} a^{19} + \frac{719}{2065} a^{18} - \frac{131}{10325} a^{17} - \frac{4651}{10325} a^{16} - \frac{886}{2065} a^{15} - \frac{619}{2065} a^{14} + \frac{299}{1475} a^{13} - \frac{44}{413} a^{12} - \frac{37}{1475} a^{11} + \frac{2882}{10325} a^{10} - \frac{1657}{10325} a^{9} + \frac{561}{2065} a^{8} - \frac{2263}{10325} a^{7} - \frac{2151}{10325} a^{6} + \frac{3473}{10325} a^{5} + \frac{539}{2950} a^{4} + \frac{179}{20650} a^{3} - \frac{4636}{10325} a^{2} - \frac{4096}{10325} a - \frac{8349}{20650}$, $\frac{1}{12038950} a^{29} - \frac{7}{1719850} a^{28} - \frac{6}{1203895} a^{27} + \frac{19}{547225} a^{26} - \frac{37146}{1203895} a^{25} - \frac{596681}{12038950} a^{24} - \frac{194448}{6019475} a^{23} + \frac{33601}{1203895} a^{22} + \frac{73373}{171985} a^{21} - \frac{24127}{1203895} a^{20} - \frac{2538542}{6019475} a^{19} - \frac{3137}{14575} a^{18} + \frac{314836}{859925} a^{17} + \frac{1413663}{6019475} a^{16} + \frac{464197}{1203895} a^{15} - \frac{2255697}{6019475} a^{14} - \frac{2891439}{6019475} a^{13} - \frac{408262}{859925} a^{12} - \frac{2317176}{6019475} a^{11} - \frac{136459}{859925} a^{10} - \frac{2441059}{6019475} a^{9} + \frac{1923252}{6019475} a^{8} + \frac{2611883}{6019475} a^{7} + \frac{212991}{6019475} a^{6} - \frac{1379}{6490} a^{5} - \frac{274469}{2407790} a^{4} + \frac{37916}{113575} a^{3} - \frac{2444573}{6019475} a^{2} + \frac{331036}{6019475} a - \frac{860323}{12038950}$, $\frac{1}{344218798616325118397450} a^{30} - \frac{3917290964605222}{172109399308162559198725} a^{29} + \frac{729763623864407779}{49174114088046445485350} a^{28} - \frac{1550059117592932313}{68843759723265023679490} a^{27} + \frac{30341025692676898891}{344218798616325118397450} a^{26} + \frac{139965456512815986583}{5551916106714921264475} a^{25} - \frac{338697368081426936298}{6884375972326502367949} a^{24} + \frac{60598835233770501571}{983482281760928909707} a^{23} - \frac{3126960349749035085624}{172109399308162559198725} a^{22} + \frac{377104012061634710419}{793130872387845894925} a^{21} + \frac{60052599823788859367247}{172109399308162559198725} a^{20} - \frac{8407118673259446076422}{24587057044023222742675} a^{19} - \frac{1076915750828879305761}{3247347156757784135825} a^{18} - \frac{12192266285197850396579}{34421879861632511839745} a^{17} - \frac{62275806870520938645028}{172109399308162559198725} a^{16} - \frac{15651922279846769234877}{172109399308162559198725} a^{15} - \frac{64651745992095315122009}{172109399308162559198725} a^{14} + \frac{12161209391466930238058}{34421879861632511839745} a^{13} + \frac{79714821338251643523059}{172109399308162559198725} a^{12} + \frac{621215311322823205249}{3129261805602955621795} a^{11} - \frac{18997300653109690056603}{172109399308162559198725} a^{10} - \frac{21329048131812293525969}{172109399308162559198725} a^{9} - \frac{23882958964807325970012}{172109399308162559198725} a^{8} + \frac{179602243801542285659}{847829553242180094575} a^{7} - \frac{276467327157251806351}{31292618056029556217950} a^{6} + \frac{77042554782340344635824}{172109399308162559198725} a^{5} + \frac{393863406935379865887}{1601017667982907527430} a^{4} + \frac{1919611530449826835929}{5834216925700425735550} a^{3} - \frac{5904207849132205186027}{49174114088046445485350} a^{2} - \frac{83715555791169020873587}{172109399308162559198725} a + \frac{11635411890120489447654}{172109399308162559198725}$, $\frac{1}{193814307807186708025455162505127797600180444550} a^{31} + \frac{1942394754339472322678}{13843879129084764858961083036080556971441460325} a^{30} - \frac{391727328050509611591493439501360165579}{96907153903593354012727581252563898800090222275} a^{29} - \frac{2434845587695232457682345610521692163212679}{193814307807186708025455162505127797600180444550} a^{28} - \frac{23222758584822109192183421497290391950595999}{193814307807186708025455162505127797600180444550} a^{27} + \frac{22603525734539370797078795788475384221497571}{193814307807186708025455162505127797600180444550} a^{26} + \frac{2534071115638185520008251827053740679380644373}{96907153903593354012727581252563898800090222275} a^{25} - \frac{4742642115961029882585433104143742898215755759}{96907153903593354012727581252563898800090222275} a^{24} - \frac{307177951510283876302654296599696626414630329}{13843879129084764858961083036080556971441460325} a^{23} + \frac{4045228867683344078780904038126228537126978999}{96907153903593354012727581252563898800090222275} a^{22} + \frac{3700608047832338196193138479498714528052825281}{19381430780718670802545516250512779760018044455} a^{21} - \frac{10514801169236165993007941182948883274888177}{58342657377238623728312812313403912582835775} a^{20} - \frac{17614645889004898001865995903032320677392626263}{96907153903593354012727581252563898800090222275} a^{19} - \frac{30758945669578251902285894424847224585633919766}{96907153903593354012727581252563898800090222275} a^{18} - \frac{38266452847350594567373721023754165826986428582}{96907153903593354012727581252563898800090222275} a^{17} + \frac{6556901159214751767352248966699223338049567282}{13843879129084764858961083036080556971441460325} a^{16} + \frac{47392264785010650115361136724337269091924279634}{96907153903593354012727581252563898800090222275} a^{15} + \frac{9098861708152721892979410790559356858464720027}{19381430780718670802545516250512779760018044455} a^{14} + \frac{32034890567293847935920331322778651505520564627}{96907153903593354012727581252563898800090222275} a^{13} + \frac{15992294018711036009223420621641300569959349612}{96907153903593354012727581252563898800090222275} a^{12} + \frac{16855805072709355364196840939436506310661752559}{96907153903593354012727581252563898800090222275} a^{11} - \frac{28386757704754661537642585267774374919885988046}{96907153903593354012727581252563898800090222275} a^{10} - \frac{1121538548784472331665368301072140195324496}{12108853417917450207763036517876283743607425} a^{9} - \frac{11744460888097923093683489830499658198139291929}{96907153903593354012727581252563898800090222275} a^{8} + \frac{7296646517047610666223564992496688238156235251}{17619482527926064365950469318647981600016404050} a^{7} + \frac{35088509966468154223984328057747649929754919719}{96907153903593354012727581252563898800090222275} a^{6} - \frac{23586028286287042050365513978791756317285042501}{96907153903593354012727581252563898800090222275} a^{5} + \frac{25290778378146779618322193109348439929730711971}{193814307807186708025455162505127797600180444550} a^{4} - \frac{14534482224336662733712969820872705121486271347}{38762861561437341605091032501025559520036088910} a^{3} + \frac{82859454875692580391327294230521738183177108999}{193814307807186708025455162505127797600180444550} a^{2} + \frac{12416978368082645458855182577719475653279567}{365687373221106996274443702839863769056944235} a - \frac{41715382046717370505174446345877109842027550093}{96907153903593354012727581252563898800090222275}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{5813233793250990397555049726219043664958222326}{13843879129084764858961083036080556971441460325} a^{31} + \frac{313058792723162497869348165189543391911301676767}{96907153903593354012727581252563898800090222275} a^{30} - \frac{37054210403733855916135027276944665787622580007}{4507309483888062977336166569886692967446056850} a^{29} + \frac{1363141573795627555646626794476227343974898529287}{96907153903593354012727581252563898800090222275} a^{28} - \frac{13540841942993408602557041640135108047184002083461}{193814307807186708025455162505127797600180444550} a^{27} + \frac{53595764744693003614729576396491644755877091488007}{193814307807186708025455162505127797600180444550} a^{26} - \frac{42768372550827290812157084203186147561824293553582}{96907153903593354012727581252563898800090222275} a^{25} - \frac{49247822236294657827509483759437767783244213564157}{96907153903593354012727581252563898800090222275} a^{24} + \frac{368843992106941123511534181055872872832359940628812}{96907153903593354012727581252563898800090222275} a^{23} - \frac{166566622846549580070499961434818690426282847612934}{19381430780718670802545516250512779760018044455} a^{22} + \frac{1012396760840747374585713091184219639881990414719708}{96907153903593354012727581252563898800090222275} a^{21} - \frac{43133024291071871246068493738469773567943068001007}{8809741263963032182975234659323990800008202025} a^{20} - \frac{395447275940503425117720491653817533475422107485363}{96907153903593354012727581252563898800090222275} a^{19} + \frac{2099354223268852302892452740124769298329985158495238}{96907153903593354012727581252563898800090222275} a^{18} - \frac{11929910309621938335029349421532955824181382382849829}{96907153903593354012727581252563898800090222275} a^{17} + \frac{5798948450096472874577707663504427609376473559138033}{13843879129084764858961083036080556971441460325} a^{16} - \frac{15468404626972161061208414672302436173494312698823118}{19381430780718670802545516250512779760018044455} a^{15} + \frac{93590828169507739053280346457161095951761270523335492}{96907153903593354012727581252563898800090222275} a^{14} - \frac{82446463767698257007722316487106048698558356976218752}{96907153903593354012727581252563898800090222275} a^{13} + \frac{10559940074280426442942612294571259929802601080873907}{19381430780718670802545516250512779760018044455} a^{12} - \frac{24670440691204120787232873477468689131102953593769149}{96907153903593354012727581252563898800090222275} a^{11} + \frac{9255120962340904556387960040955490913520952281597767}{96907153903593354012727581252563898800090222275} a^{10} - \frac{988904651754516272201153935897453050299687714441863}{19381430780718670802545516250512779760018044455} a^{9} + \frac{2098497702604096510018743795660950122343799718049527}{96907153903593354012727581252563898800090222275} a^{8} - \frac{43218920416338525607714988932101176226223579612404}{8809741263963032182975234659323990800008202025} a^{7} + \frac{3048847681603319526363160213496805227585448841102}{2253654741944031488668083284943346483723028425} a^{6} - \frac{44053440887251912559993267187161402082137346322999}{193814307807186708025455162505127797600180444550} a^{5} - \frac{217049248544852947607796794169263992303004737449}{96907153903593354012727581252563898800090222275} a^{4} - \frac{728295092022594877282397190043773960422084001043}{38762861561437341605091032501025559520036088910} a^{3} + \frac{1268108014959344308335996092678611078172330091927}{193814307807186708025455162505127797600180444550} a^{2} - \frac{222631420193665279006894984012361680594655562}{1828436866105534981372218514199318845284721175} a - \frac{246257323728857193349491022855375283225169988}{1167556071127630771237681701838119262651689425} \) (order $24$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 184122377962.3511 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times D_4$ (as 32T273):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^3\times D_4$ |
Character table for $C_2^3\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
$11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |