# SageMath code for working with number field 32.0.6142666889587199870339155304469168186187744140625.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 38*x^30 - 130*x^29 + 699*x^28 - 2191*x^27 + 8745*x^26 - 25571*x^25 + 83386*x^24 - 222738*x^23 + 612551*x^22 - 1445800*x^21 + 3366820*x^20 - 6839883*x^19 + 13440516*x^18 - 23161945*x^17 + 38310126*x^16 - 55684805*x^15 + 77474162*x^14 - 94829103*x^13 + 110710129*x^12 - 113727761*x^11 + 110357640*x^10 - 94103904*x^9 + 74479117*x^8 - 51698016*x^7 + 32429638*x^6 - 17496051*x^5 + 7973462*x^4 - 3036857*x^3 + 868340*x^2 - 166271*x + 16531) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 38*x^30 - 130*x^29 + 699*x^28 - 2191*x^27 + 8745*x^26 - 25571*x^25 + 83386*x^24 - 222738*x^23 + 612551*x^22 - 1445800*x^21 + 3366820*x^20 - 6839883*x^19 + 13440516*x^18 - 23161945*x^17 + 38310126*x^16 - 55684805*x^15 + 77474162*x^14 - 94829103*x^13 + 110710129*x^12 - 113727761*x^11 + 110357640*x^10 - 94103904*x^9 + 74479117*x^8 - 51698016*x^7 + 32429638*x^6 - 17496051*x^5 + 7973462*x^4 - 3036857*x^3 + 868340*x^2 - 166271*x + 16531) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]