Properties

Label 32.0.613...000.2
Degree $32$
Signature $[0, 16]$
Discriminant $6.130\times 10^{56}$
Root discriminant \(59.51\)
Ramified primes $2,5,7$
Class number $640$ (GRH)
Class group [2, 8, 40] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456)
 
gp: K = bnfinit(y^32 - 16*y^31 + 160*y^30 - 1160*y^29 + 6756*y^28 - 32872*y^27 + 137688*y^26 - 504816*y^25 + 1639376*y^24 - 4749552*y^23 + 12315372*y^22 - 28585976*y^21 + 59189458*y^20 - 108563512*y^19 + 174237344*y^18 - 239583744*y^17 + 271203819*y^16 - 229422992*y^15 + 95660524*y^14 + 97892432*y^13 - 263767222*y^12 + 302963088*y^11 - 176472000*y^10 - 53416448*y^9 + 268061612*y^8 - 376049408*y^7 + 358649568*y^6 - 258848640*y^5 + 145683560*y^4 - 64335936*y^3 + 22597024*y^2 - 5903488*y + 1225456, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456)
 

\( x^{32} - 16 x^{31} + 160 x^{30} - 1160 x^{29} + 6756 x^{28} - 32872 x^{27} + 137688 x^{26} + \cdots + 1225456 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(613039365036788240314949190025216000000000000000000000000\) \(\medspace = 2^{88}\cdot 5^{24}\cdot 7^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.51\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}5^{3/4}7^{1/2}\approx 59.512611935526614$
Ramified primes:   \(2\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(560=2^{4}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(517,·)$, $\chi_{560}(321,·)$, $\chi_{560}(393,·)$, $\chi_{560}(13,·)$, $\chi_{560}(533,·)$, $\chi_{560}(281,·)$, $\chi_{560}(153,·)$, $\chi_{560}(29,·)$, $\chi_{560}(197,·)$, $\chi_{560}(293,·)$, $\chi_{560}(41,·)$, $\chi_{560}(349,·)$, $\chi_{560}(433,·)$, $\chi_{560}(309,·)$, $\chi_{560}(57,·)$, $\chi_{560}(181,·)$, $\chi_{560}(449,·)$, $\chi_{560}(69,·)$, $\chi_{560}(461,·)$, $\chi_{560}(141,·)$, $\chi_{560}(337,·)$, $\chi_{560}(477,·)$, $\chi_{560}(421,·)$, $\chi_{560}(97,·)$, $\chi_{560}(209,·)$, $\chi_{560}(489,·)$, $\chi_{560}(237,·)$, $\chi_{560}(113,·)$, $\chi_{560}(169,·)$, $\chi_{560}(377,·)$, $\chi_{560}(253,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{7}$, $\frac{1}{164}a^{16}-\frac{2}{41}a^{15}-\frac{1}{41}a^{14}+\frac{1}{41}a^{13}-\frac{1}{41}a^{12}+\frac{9}{82}a^{11}-\frac{4}{41}a^{10}-\frac{17}{82}a^{9}+\frac{19}{164}a^{8}-\frac{27}{82}a^{7}-\frac{6}{41}a^{6}+\frac{17}{82}a^{5}+\frac{9}{41}a^{4}-\frac{19}{41}a^{3}+\frac{8}{41}a^{2}+\frac{19}{41}a+\frac{20}{41}$, $\frac{1}{164}a^{17}+\frac{7}{82}a^{15}-\frac{7}{41}a^{14}+\frac{7}{41}a^{13}-\frac{7}{82}a^{12}-\frac{9}{41}a^{11}+\frac{1}{82}a^{10}-\frac{7}{164}a^{9}+\frac{4}{41}a^{8}-\frac{23}{82}a^{7}+\frac{3}{82}a^{6}+\frac{31}{82}a^{5}-\frac{17}{82}a^{4}+\frac{20}{41}a^{3}+\frac{1}{41}a^{2}+\frac{8}{41}a-\frac{4}{41}$, $\frac{1}{164}a^{18}+\frac{1}{82}a^{15}+\frac{1}{82}a^{14}+\frac{3}{41}a^{13}+\frac{5}{41}a^{12}-\frac{1}{41}a^{11}-\frac{29}{164}a^{10}+\frac{4}{41}a^{8}-\frac{29}{82}a^{7}+\frac{35}{82}a^{6}+\frac{16}{41}a^{5}+\frac{17}{41}a^{4}-\frac{20}{41}a^{3}+\frac{19}{41}a^{2}+\frac{17}{41}a+\frac{7}{41}$, $\frac{1}{164}a^{19}+\frac{9}{82}a^{15}+\frac{5}{41}a^{14}+\frac{3}{41}a^{13}+\frac{1}{41}a^{12}+\frac{17}{164}a^{11}+\frac{8}{41}a^{10}+\frac{1}{82}a^{9}-\frac{7}{82}a^{8}-\frac{17}{41}a^{7}-\frac{13}{41}a^{6}-\frac{1}{2}a^{5}-\frac{35}{82}a^{4}+\frac{16}{41}a^{3}+\frac{1}{41}a^{2}+\frac{10}{41}a+\frac{1}{41}$, $\frac{1}{164}a^{20}+\frac{1}{82}a^{14}+\frac{7}{82}a^{13}+\frac{7}{164}a^{12}+\frac{9}{41}a^{11}-\frac{19}{82}a^{10}+\frac{6}{41}a^{9}-\frac{16}{41}a^{7}-\frac{15}{41}a^{6}-\frac{13}{82}a^{5}+\frac{18}{41}a^{4}+\frac{15}{41}a^{3}-\frac{11}{41}a^{2}-\frac{13}{41}a+\frac{9}{41}$, $\frac{1}{164}a^{21}+\frac{1}{82}a^{15}+\frac{7}{82}a^{14}+\frac{7}{164}a^{13}+\frac{9}{41}a^{12}-\frac{19}{82}a^{11}+\frac{6}{41}a^{10}+\frac{9}{82}a^{8}-\frac{15}{41}a^{7}-\frac{13}{82}a^{6}+\frac{18}{41}a^{5}-\frac{11}{82}a^{4}-\frac{11}{41}a^{3}-\frac{13}{41}a^{2}+\frac{9}{41}a$, $\frac{1}{164}a^{22}+\frac{15}{82}a^{15}+\frac{15}{164}a^{14}+\frac{7}{41}a^{13}-\frac{15}{82}a^{12}-\frac{3}{41}a^{11}+\frac{8}{41}a^{10}+\frac{1}{41}a^{9}-\frac{4}{41}a^{8}-\frac{1}{2}a^{7}-\frac{11}{41}a^{6}-\frac{2}{41}a^{5}-\frac{17}{82}a^{4}-\frac{16}{41}a^{3}-\frac{7}{41}a^{2}+\frac{3}{41}a+\frac{1}{41}$, $\frac{1}{164}a^{23}+\frac{9}{164}a^{15}-\frac{4}{41}a^{14}+\frac{7}{82}a^{13}+\frac{13}{82}a^{12}-\frac{4}{41}a^{11}-\frac{2}{41}a^{10}+\frac{5}{41}a^{9}+\frac{1}{41}a^{8}+\frac{9}{82}a^{7}+\frac{14}{41}a^{6}-\frac{35}{82}a^{5}-\frac{39}{82}a^{4}-\frac{11}{41}a^{3}+\frac{9}{41}a^{2}+\frac{5}{41}a+\frac{15}{41}$, $\frac{1}{13448}a^{24}-\frac{3}{3362}a^{23}+\frac{1}{6724}a^{22}-\frac{1}{1681}a^{21}-\frac{9}{13448}a^{20}+\frac{13}{6724}a^{19}-\frac{4}{1681}a^{18}+\frac{5}{3362}a^{17}+\frac{15}{13448}a^{16}-\frac{33}{1681}a^{15}+\frac{727}{6724}a^{14}-\frac{677}{3362}a^{13}-\frac{3055}{13448}a^{12}-\frac{935}{6724}a^{11}-\frac{248}{1681}a^{10}-\frac{143}{3362}a^{9}-\frac{368}{1681}a^{8}+\frac{111}{1681}a^{7}-\frac{411}{1681}a^{6}-\frac{829}{3362}a^{5}+\frac{163}{1681}a^{4}-\frac{692}{1681}a^{3}+\frac{688}{1681}a^{2}+\frac{326}{1681}a+\frac{550}{1681}$, $\frac{1}{13448}a^{25}+\frac{11}{6724}a^{23}+\frac{2}{1681}a^{22}-\frac{23}{13448}a^{21}+\frac{17}{6724}a^{19}-\frac{9}{3362}a^{18}+\frac{9}{13448}a^{17}-\frac{1}{6724}a^{16}-\frac{611}{6724}a^{15}+\frac{569}{3362}a^{14}+\frac{3235}{13448}a^{13}-\frac{469}{3362}a^{12}-\frac{1101}{6724}a^{11}+\frac{130}{1681}a^{10}+\frac{303}{6724}a^{9}+\frac{11}{164}a^{8}+\frac{593}{1681}a^{7}-\frac{201}{1681}a^{6}+\frac{669}{3362}a^{5}+\frac{649}{1681}a^{4}-\frac{31}{1681}a^{3}-\frac{233}{1681}a^{2}-\frac{663}{1681}a+\frac{450}{1681}$, $\frac{1}{13448}a^{26}+\frac{17}{6724}a^{23}+\frac{15}{13448}a^{22}+\frac{3}{3362}a^{21}-\frac{7}{6724}a^{20}-\frac{17}{6724}a^{19}-\frac{25}{13448}a^{18}-\frac{4}{1681}a^{17}+\frac{3}{6724}a^{16}-\frac{1657}{6724}a^{15}-\frac{463}{13448}a^{14}+\frac{58}{1681}a^{13}-\frac{1403}{6724}a^{12}+\frac{631}{6724}a^{11}+\frac{335}{1681}a^{10}+\frac{261}{1681}a^{9}-\frac{53}{6724}a^{8}+\frac{413}{3362}a^{7}-\frac{771}{1681}a^{6}+\frac{1537}{3362}a^{5}+\frac{729}{1681}a^{4}-\frac{794}{1681}a^{3}+\frac{68}{1681}a^{2}-\frac{39}{1681}a+\frac{815}{1681}$, $\frac{1}{13448}a^{27}+\frac{13}{13448}a^{23}+\frac{13}{6724}a^{22}+\frac{3}{3362}a^{21}+\frac{13}{6724}a^{20}-\frac{7}{13448}a^{19}-\frac{5}{6724}a^{18}-\frac{9}{6724}a^{17}+\frac{15}{6724}a^{16}-\frac{753}{13448}a^{15}-\frac{1239}{6724}a^{14}-\frac{459}{3362}a^{13}-\frac{611}{6724}a^{12}+\frac{1601}{6724}a^{11}-\frac{1185}{6724}a^{10}-\frac{251}{6724}a^{9}+\frac{239}{6724}a^{8}-\frac{281}{1681}a^{7}+\frac{413}{1681}a^{6}+\frac{431}{1681}a^{5}+\frac{101}{1681}a^{4}+\frac{759}{1681}a^{3}+\frac{267}{1681}a^{2}+\frac{473}{1681}a-\frac{660}{1681}$, $\frac{1}{1654104}a^{28}-\frac{7}{827052}a^{27}+\frac{19}{827052}a^{26}-\frac{11}{413526}a^{25}+\frac{7}{206763}a^{24}-\frac{743}{413526}a^{23}-\frac{337}{206763}a^{22}-\frac{253}{137842}a^{21}+\frac{149}{413526}a^{20}-\frac{289}{137842}a^{19}+\frac{539}{275684}a^{18}-\frac{1957}{827052}a^{17}+\frac{2477}{827052}a^{16}-\frac{13838}{68921}a^{15}-\frac{16981}{206763}a^{14}-\frac{20609}{413526}a^{13}-\frac{107831}{551368}a^{12}+\frac{23441}{275684}a^{11}-\frac{5159}{137842}a^{10}-\frac{98317}{827052}a^{9}+\frac{63839}{827052}a^{8}+\frac{70538}{206763}a^{7}-\frac{174245}{413526}a^{6}+\frac{29207}{206763}a^{5}+\frac{73642}{206763}a^{4}+\frac{22686}{68921}a^{3}-\frac{835}{1681}a^{2}-\frac{85130}{206763}a-\frac{35029}{206763}$, $\frac{1}{1654104}a^{29}-\frac{35}{1654104}a^{27}-\frac{1}{413526}a^{26}+\frac{55}{1654104}a^{25}+\frac{13}{827052}a^{24}-\frac{623}{551368}a^{23}-\frac{109}{413526}a^{22}+\frac{2495}{1654104}a^{21}-\frac{1241}{413526}a^{20}-\frac{469}{551368}a^{19}-\frac{53}{413526}a^{18}+\frac{1139}{551368}a^{17}+\frac{485}{413526}a^{16}+\frac{86245}{1654104}a^{15}-\frac{18005}{137842}a^{14}+\frac{36931}{206763}a^{13}+\frac{795}{68921}a^{12}+\frac{18187}{275684}a^{11}+\frac{18710}{206763}a^{10}-\frac{10030}{68921}a^{9}+\frac{6607}{275684}a^{8}-\frac{9926}{68921}a^{7}+\frac{2135}{68921}a^{6}-\frac{72928}{206763}a^{5}-\frac{1603}{10086}a^{4}-\frac{20236}{68921}a^{3}-\frac{2474}{206763}a^{2}-\frac{63884}{206763}a+\frac{7498}{206763}$, $\frac{1}{27\!\cdots\!16}a^{30}-\frac{5}{91\!\cdots\!72}a^{29}+\frac{22\!\cdots\!03}{22\!\cdots\!18}a^{28}-\frac{38\!\cdots\!89}{27\!\cdots\!16}a^{27}-\frac{44\!\cdots\!41}{13\!\cdots\!08}a^{26}-\frac{60\!\cdots\!21}{33\!\cdots\!88}a^{25}-\frac{40\!\cdots\!11}{13\!\cdots\!08}a^{24}-\frac{12\!\cdots\!55}{27\!\cdots\!16}a^{23}+\frac{16\!\cdots\!69}{13\!\cdots\!08}a^{22}+\frac{13\!\cdots\!23}{13\!\cdots\!08}a^{21}+\frac{80\!\cdots\!32}{34\!\cdots\!77}a^{20}+\frac{55\!\cdots\!07}{27\!\cdots\!16}a^{19}+\frac{27\!\cdots\!35}{45\!\cdots\!36}a^{18}+\frac{85\!\cdots\!40}{34\!\cdots\!77}a^{17}+\frac{11\!\cdots\!91}{11\!\cdots\!59}a^{16}+\frac{13\!\cdots\!73}{91\!\cdots\!72}a^{15}-\frac{53\!\cdots\!21}{14\!\cdots\!76}a^{14}+\frac{15\!\cdots\!65}{27\!\cdots\!16}a^{13}-\frac{82\!\cdots\!82}{11\!\cdots\!59}a^{12}-\frac{89\!\cdots\!91}{13\!\cdots\!08}a^{11}+\frac{15\!\cdots\!01}{11\!\cdots\!59}a^{10}-\frac{13\!\cdots\!69}{13\!\cdots\!08}a^{9}-\frac{96\!\cdots\!67}{13\!\cdots\!08}a^{8}+\frac{59\!\cdots\!50}{34\!\cdots\!77}a^{7}+\frac{59\!\cdots\!89}{22\!\cdots\!18}a^{6}+\frac{18\!\cdots\!08}{11\!\cdots\!59}a^{5}+\frac{12\!\cdots\!96}{34\!\cdots\!77}a^{4}-\frac{11\!\cdots\!48}{34\!\cdots\!77}a^{3}-\frac{11\!\cdots\!57}{34\!\cdots\!77}a^{2}+\frac{16\!\cdots\!82}{11\!\cdots\!59}a+\frac{41\!\cdots\!31}{18\!\cdots\!47}$, $\frac{1}{11\!\cdots\!96}a^{31}+\frac{21506825}{11\!\cdots\!96}a^{30}-\frac{13\!\cdots\!69}{59\!\cdots\!48}a^{29}+\frac{10\!\cdots\!93}{39\!\cdots\!32}a^{28}-\frac{16\!\cdots\!89}{59\!\cdots\!48}a^{27}+\frac{13\!\cdots\!33}{11\!\cdots\!96}a^{26}+\frac{20\!\cdots\!53}{59\!\cdots\!48}a^{25}+\frac{40\!\cdots\!87}{11\!\cdots\!96}a^{24}+\frac{31\!\cdots\!49}{14\!\cdots\!37}a^{23}-\frac{98\!\cdots\!71}{39\!\cdots\!32}a^{22}-\frac{93\!\cdots\!57}{59\!\cdots\!48}a^{21}+\frac{96\!\cdots\!69}{39\!\cdots\!32}a^{20}-\frac{67\!\cdots\!97}{29\!\cdots\!74}a^{19}-\frac{21\!\cdots\!93}{39\!\cdots\!32}a^{18}-\frac{12\!\cdots\!81}{59\!\cdots\!48}a^{17}+\frac{67\!\cdots\!95}{39\!\cdots\!32}a^{16}-\frac{27\!\cdots\!27}{39\!\cdots\!32}a^{15}-\frac{28\!\cdots\!23}{49\!\cdots\!79}a^{14}-\frac{30\!\cdots\!29}{29\!\cdots\!74}a^{13}-\frac{14\!\cdots\!49}{59\!\cdots\!48}a^{12}+\frac{86\!\cdots\!31}{59\!\cdots\!48}a^{11}-\frac{13\!\cdots\!99}{59\!\cdots\!48}a^{10}-\frac{35\!\cdots\!85}{74\!\cdots\!63}a^{9}+\frac{13\!\cdots\!83}{14\!\cdots\!37}a^{8}-\frac{45\!\cdots\!56}{49\!\cdots\!79}a^{7}-\frac{60\!\cdots\!60}{14\!\cdots\!37}a^{6}+\frac{32\!\cdots\!14}{14\!\cdots\!37}a^{5}+\frac{39\!\cdots\!87}{14\!\cdots\!37}a^{4}-\frac{94\!\cdots\!77}{49\!\cdots\!79}a^{3}-\frac{42\!\cdots\!14}{14\!\cdots\!37}a^{2}+\frac{34\!\cdots\!45}{14\!\cdots\!37}a+\frac{34\!\cdots\!57}{77\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{8}\times C_{40}$, which has order $640$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{9989108554088054390736347731}{12311201406070092625065178272294477} a^{30} - \frac{49945542770440271953681738655}{4103733802023364208355059424098159} a^{29} + \frac{5770338199713173015710351857211}{49244805624280370500260713089177908} a^{28} - \frac{20114477033193460696777677106547}{24622402812140185250130356544588954} a^{27} + \frac{226332322718695684873799648440999}{49244805624280370500260713089177908} a^{26} - \frac{531714508497849880752582599092475}{24622402812140185250130356544588954} a^{25} + \frac{2869437231621686061329973513342823}{32829870416186913666840475392785272} a^{24} - \frac{3808437095859389083589364993831676}{12311201406070092625065178272294477} a^{23} + \frac{23846355689597413046421249465726067}{24622402812140185250130356544588954} a^{22} - \frac{33224371809840443018941674361560323}{12311201406070092625065178272294477} a^{21} + \frac{220131048255308178867350311304543633}{32829870416186913666840475392785272} a^{20} - \frac{8908567118715279330458673521936957}{600546410052199640247081866941194} a^{19} + \frac{476626698281379309460471784867731285}{16414935208093456833420237696392636} a^{18} - \frac{1224767986943708709952985567717550323}{24622402812140185250130356544588954} a^{17} + \frac{7202165005636213902405409365429196967}{98489611248560741000521426178355816} a^{16} - \frac{364926629132769442151532471734711561}{4103733802023364208355059424098159} a^{15} + \frac{5302397780000184085545077575168876}{64456551864241322644320305090547} a^{14} - \frac{4202472243042333142223485443577913}{100091068342033273374513644490199} a^{13} - \frac{853656844494405986537101533358452563}{32829870416186913666840475392785272} a^{12} + \frac{1141139200533098540302876075835388955}{12311201406070092625065178272294477} a^{11} - \frac{479963512589257869275951154354431814}{4103733802023364208355059424098159} a^{10} + \frac{310171906318240906144107296591893634}{4103733802023364208355059424098159} a^{9} + \frac{104150683091439591826749148569328809}{8207467604046728416710118848196318} a^{8} - \frac{392904170663331119856822863746469396}{4103733802023364208355059424098159} a^{7} + \frac{1641020268603704356754624989266407854}{12311201406070092625065178272294477} a^{6} - \frac{1494683107540650099825064861048425092}{12311201406070092625065178272294477} a^{5} + \frac{327816035847392232039850517177757127}{4103733802023364208355059424098159} a^{4} - \frac{453979084081130324499557327800258432}{12311201406070092625065178272294477} a^{3} + \frac{148619981891638384826428463250417650}{12311201406070092625065178272294477} a^{2} - \frac{35685299116755840617648403955640992}{12311201406070092625065178272294477} a + \frac{27937786494084824863810300489786}{21485517288080440881440101696849} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{93\!\cdots\!29}{48\!\cdots\!78}a^{30}-\frac{14\!\cdots\!35}{48\!\cdots\!78}a^{29}+\frac{13\!\cdots\!09}{49\!\cdots\!08}a^{28}-\frac{23\!\cdots\!29}{12\!\cdots\!77}a^{27}+\frac{53\!\cdots\!83}{49\!\cdots\!08}a^{26}-\frac{12\!\cdots\!95}{24\!\cdots\!54}a^{25}+\frac{10\!\cdots\!19}{49\!\cdots\!08}a^{24}-\frac{89\!\cdots\!72}{12\!\cdots\!77}a^{23}+\frac{11\!\cdots\!87}{49\!\cdots\!08}a^{22}-\frac{51\!\cdots\!33}{82\!\cdots\!18}a^{21}+\frac{77\!\cdots\!57}{49\!\cdots\!08}a^{20}-\frac{14\!\cdots\!99}{41\!\cdots\!59}a^{19}+\frac{11\!\cdots\!87}{16\!\cdots\!36}a^{18}-\frac{28\!\cdots\!77}{24\!\cdots\!54}a^{17}+\frac{20\!\cdots\!02}{12\!\cdots\!77}a^{16}-\frac{83\!\cdots\!60}{41\!\cdots\!59}a^{15}+\frac{48\!\cdots\!01}{25\!\cdots\!88}a^{14}-\frac{11\!\cdots\!68}{12\!\cdots\!77}a^{13}-\frac{26\!\cdots\!07}{41\!\cdots\!59}a^{12}+\frac{88\!\cdots\!76}{41\!\cdots\!59}a^{11}-\frac{10\!\cdots\!96}{41\!\cdots\!59}a^{10}+\frac{20\!\cdots\!22}{12\!\cdots\!77}a^{9}+\frac{17\!\cdots\!13}{49\!\cdots\!08}a^{8}-\frac{27\!\cdots\!80}{12\!\cdots\!77}a^{7}+\frac{37\!\cdots\!52}{12\!\cdots\!77}a^{6}-\frac{33\!\cdots\!04}{12\!\cdots\!77}a^{5}+\frac{44\!\cdots\!35}{24\!\cdots\!54}a^{4}-\frac{34\!\cdots\!32}{41\!\cdots\!59}a^{3}+\frac{26\!\cdots\!56}{10\!\cdots\!99}a^{2}-\frac{76\!\cdots\!40}{12\!\cdots\!77}a+\frac{96\!\cdots\!99}{64\!\cdots\!47}$, $\frac{82\!\cdots\!31}{76\!\cdots\!01}a^{30}-\frac{12\!\cdots\!65}{76\!\cdots\!01}a^{29}+\frac{23\!\cdots\!35}{15\!\cdots\!02}a^{28}-\frac{84\!\cdots\!80}{76\!\cdots\!01}a^{27}+\frac{47\!\cdots\!05}{76\!\cdots\!01}a^{26}-\frac{45\!\cdots\!51}{15\!\cdots\!02}a^{25}+\frac{36\!\cdots\!35}{30\!\cdots\!04}a^{24}-\frac{32\!\cdots\!80}{76\!\cdots\!01}a^{23}+\frac{10\!\cdots\!95}{76\!\cdots\!01}a^{22}-\frac{29\!\cdots\!55}{76\!\cdots\!01}a^{21}+\frac{14\!\cdots\!43}{15\!\cdots\!02}a^{20}-\frac{16\!\cdots\!70}{76\!\cdots\!01}a^{19}+\frac{13\!\cdots\!15}{30\!\cdots\!04}a^{18}-\frac{11\!\cdots\!25}{15\!\cdots\!02}a^{17}+\frac{35\!\cdots\!75}{30\!\cdots\!04}a^{16}-\frac{11\!\cdots\!58}{76\!\cdots\!01}a^{15}+\frac{23\!\cdots\!95}{15\!\cdots\!02}a^{14}-\frac{80\!\cdots\!75}{76\!\cdots\!01}a^{13}+\frac{64\!\cdots\!65}{15\!\cdots\!02}a^{12}+\frac{87\!\cdots\!60}{76\!\cdots\!01}a^{11}-\frac{57\!\cdots\!29}{30\!\cdots\!04}a^{10}+\frac{30\!\cdots\!45}{18\!\cdots\!61}a^{9}-\frac{34\!\cdots\!90}{76\!\cdots\!01}a^{8}-\frac{78\!\cdots\!00}{76\!\cdots\!01}a^{7}+\frac{15\!\cdots\!70}{76\!\cdots\!01}a^{6}-\frac{17\!\cdots\!28}{76\!\cdots\!01}a^{5}+\frac{13\!\cdots\!70}{76\!\cdots\!01}a^{4}-\frac{81\!\cdots\!60}{76\!\cdots\!01}a^{3}+\frac{35\!\cdots\!40}{76\!\cdots\!01}a^{2}-\frac{99\!\cdots\!60}{76\!\cdots\!01}a+\frac{18\!\cdots\!73}{76\!\cdots\!01}$, $\frac{11\!\cdots\!00}{49\!\cdots\!79}a^{31}-\frac{10\!\cdots\!47}{29\!\cdots\!74}a^{30}+\frac{10\!\cdots\!29}{29\!\cdots\!74}a^{29}-\frac{77\!\cdots\!53}{29\!\cdots\!74}a^{28}+\frac{44\!\cdots\!77}{29\!\cdots\!74}a^{27}-\frac{10\!\cdots\!40}{14\!\cdots\!37}a^{26}+\frac{44\!\cdots\!94}{14\!\cdots\!37}a^{25}-\frac{42\!\cdots\!85}{39\!\cdots\!32}a^{24}+\frac{17\!\cdots\!24}{49\!\cdots\!79}a^{23}-\frac{59\!\cdots\!67}{59\!\cdots\!48}a^{22}+\frac{75\!\cdots\!33}{29\!\cdots\!74}a^{21}-\frac{69\!\cdots\!17}{11\!\cdots\!96}a^{20}+\frac{35\!\cdots\!39}{29\!\cdots\!74}a^{19}-\frac{31\!\cdots\!18}{14\!\cdots\!37}a^{18}+\frac{16\!\cdots\!64}{49\!\cdots\!79}a^{17}-\frac{17\!\cdots\!77}{39\!\cdots\!32}a^{16}+\frac{70\!\cdots\!51}{14\!\cdots\!37}a^{15}-\frac{70\!\cdots\!59}{19\!\cdots\!16}a^{14}+\frac{10\!\cdots\!53}{14\!\cdots\!37}a^{13}+\frac{11\!\cdots\!43}{39\!\cdots\!32}a^{12}-\frac{82\!\cdots\!23}{14\!\cdots\!37}a^{11}+\frac{79\!\cdots\!12}{14\!\cdots\!37}a^{10}-\frac{31\!\cdots\!16}{14\!\cdots\!37}a^{9}-\frac{14\!\cdots\!97}{59\!\cdots\!48}a^{8}+\frac{88\!\cdots\!60}{14\!\cdots\!37}a^{7}-\frac{20\!\cdots\!53}{29\!\cdots\!74}a^{6}+\frac{86\!\cdots\!34}{14\!\cdots\!37}a^{5}-\frac{10\!\cdots\!15}{29\!\cdots\!74}a^{4}+\frac{23\!\cdots\!36}{14\!\cdots\!37}a^{3}-\frac{23\!\cdots\!06}{49\!\cdots\!79}a^{2}+\frac{12\!\cdots\!47}{14\!\cdots\!37}a+\frac{16\!\cdots\!79}{77\!\cdots\!07}$, $\frac{36\!\cdots\!23}{14\!\cdots\!37}a^{31}-\frac{53\!\cdots\!95}{14\!\cdots\!37}a^{30}+\frac{17\!\cdots\!05}{49\!\cdots\!79}a^{29}-\frac{11\!\cdots\!77}{49\!\cdots\!79}a^{28}+\frac{39\!\cdots\!13}{29\!\cdots\!74}a^{27}-\frac{37\!\cdots\!67}{59\!\cdots\!48}a^{26}+\frac{14\!\cdots\!91}{59\!\cdots\!48}a^{25}-\frac{35\!\cdots\!29}{39\!\cdots\!32}a^{24}+\frac{41\!\cdots\!43}{14\!\cdots\!37}a^{23}-\frac{45\!\cdots\!39}{59\!\cdots\!48}a^{22}+\frac{28\!\cdots\!79}{14\!\cdots\!37}a^{21}-\frac{16\!\cdots\!21}{39\!\cdots\!32}a^{20}+\frac{48\!\cdots\!27}{59\!\cdots\!48}a^{19}-\frac{83\!\cdots\!93}{59\!\cdots\!48}a^{18}+\frac{41\!\cdots\!33}{19\!\cdots\!16}a^{17}-\frac{30\!\cdots\!19}{11\!\cdots\!96}a^{16}+\frac{72\!\cdots\!63}{29\!\cdots\!74}a^{15}-\frac{83\!\cdots\!81}{59\!\cdots\!48}a^{14}-\frac{12\!\cdots\!81}{29\!\cdots\!74}a^{13}+\frac{27\!\cdots\!47}{11\!\cdots\!96}a^{12}-\frac{18\!\cdots\!63}{59\!\cdots\!48}a^{11}+\frac{67\!\cdots\!69}{29\!\cdots\!74}a^{10}-\frac{39\!\cdots\!90}{49\!\cdots\!79}a^{9}-\frac{43\!\cdots\!69}{19\!\cdots\!16}a^{8}+\frac{52\!\cdots\!46}{14\!\cdots\!37}a^{7}-\frac{10\!\cdots\!93}{29\!\cdots\!74}a^{6}+\frac{13\!\cdots\!16}{49\!\cdots\!79}a^{5}-\frac{43\!\cdots\!89}{29\!\cdots\!74}a^{4}+\frac{99\!\cdots\!72}{14\!\cdots\!37}a^{3}-\frac{33\!\cdots\!74}{14\!\cdots\!37}a^{2}+\frac{33\!\cdots\!15}{49\!\cdots\!79}a-\frac{10\!\cdots\!75}{77\!\cdots\!07}$, $\frac{18\!\cdots\!43}{13\!\cdots\!08}a^{30}-\frac{94\!\cdots\!15}{45\!\cdots\!36}a^{29}+\frac{52\!\cdots\!63}{27\!\cdots\!16}a^{28}-\frac{43\!\cdots\!74}{34\!\cdots\!77}a^{27}+\frac{18\!\cdots\!53}{27\!\cdots\!16}a^{26}-\frac{41\!\cdots\!75}{13\!\cdots\!08}a^{25}+\frac{25\!\cdots\!23}{22\!\cdots\!18}a^{24}-\frac{12\!\cdots\!79}{34\!\cdots\!77}a^{23}+\frac{27\!\cdots\!51}{27\!\cdots\!16}a^{22}-\frac{32\!\cdots\!35}{13\!\cdots\!08}a^{21}+\frac{21\!\cdots\!93}{45\!\cdots\!36}a^{20}-\frac{24\!\cdots\!59}{34\!\cdots\!77}a^{19}+\frac{60\!\cdots\!71}{91\!\cdots\!72}a^{18}+\frac{74\!\cdots\!51}{13\!\cdots\!08}a^{17}-\frac{14\!\cdots\!83}{34\!\cdots\!77}a^{16}+\frac{12\!\cdots\!73}{11\!\cdots\!59}a^{15}-\frac{30\!\cdots\!19}{14\!\cdots\!76}a^{14}+\frac{33\!\cdots\!98}{11\!\cdots\!59}a^{13}-\frac{26\!\cdots\!67}{91\!\cdots\!72}a^{12}+\frac{44\!\cdots\!69}{34\!\cdots\!77}a^{11}+\frac{15\!\cdots\!65}{11\!\cdots\!96}a^{10}-\frac{44\!\cdots\!00}{11\!\cdots\!59}a^{9}+\frac{97\!\cdots\!55}{22\!\cdots\!18}a^{8}-\frac{22\!\cdots\!36}{11\!\cdots\!59}a^{7}-\frac{97\!\cdots\!19}{68\!\cdots\!54}a^{6}+\frac{11\!\cdots\!16}{34\!\cdots\!77}a^{5}-\frac{87\!\cdots\!83}{22\!\cdots\!18}a^{4}+\frac{10\!\cdots\!88}{34\!\cdots\!77}a^{3}-\frac{46\!\cdots\!11}{34\!\cdots\!77}a^{2}+\frac{98\!\cdots\!48}{34\!\cdots\!77}a-\frac{79\!\cdots\!72}{60\!\cdots\!49}$, $\frac{18\!\cdots\!17}{29\!\cdots\!74}a^{31}-\frac{21\!\cdots\!79}{19\!\cdots\!16}a^{30}+\frac{67\!\cdots\!59}{59\!\cdots\!48}a^{29}-\frac{40\!\cdots\!73}{48\!\cdots\!76}a^{28}+\frac{98\!\cdots\!83}{19\!\cdots\!16}a^{27}-\frac{24\!\cdots\!15}{98\!\cdots\!58}a^{26}+\frac{15\!\cdots\!35}{14\!\cdots\!37}a^{25}-\frac{15\!\cdots\!49}{39\!\cdots\!32}a^{24}+\frac{24\!\cdots\!45}{19\!\cdots\!16}a^{23}-\frac{10\!\cdots\!81}{29\!\cdots\!74}a^{22}+\frac{56\!\cdots\!57}{59\!\cdots\!48}a^{21}-\frac{26\!\cdots\!49}{11\!\cdots\!96}a^{20}+\frac{45\!\cdots\!93}{98\!\cdots\!58}a^{19}-\frac{41\!\cdots\!38}{49\!\cdots\!79}a^{18}+\frac{78\!\cdots\!41}{59\!\cdots\!48}a^{17}-\frac{71\!\cdots\!99}{39\!\cdots\!32}a^{16}+\frac{39\!\cdots\!83}{19\!\cdots\!16}a^{15}-\frac{92\!\cdots\!85}{59\!\cdots\!48}a^{14}+\frac{21\!\cdots\!13}{49\!\cdots\!79}a^{13}+\frac{12\!\cdots\!87}{11\!\cdots\!96}a^{12}-\frac{43\!\cdots\!19}{19\!\cdots\!16}a^{11}+\frac{66\!\cdots\!83}{29\!\cdots\!74}a^{10}-\frac{14\!\cdots\!35}{14\!\cdots\!28}a^{9}-\frac{12\!\cdots\!88}{14\!\cdots\!37}a^{8}+\frac{34\!\cdots\!02}{14\!\cdots\!37}a^{7}-\frac{42\!\cdots\!04}{14\!\cdots\!37}a^{6}+\frac{72\!\cdots\!27}{29\!\cdots\!74}a^{5}-\frac{47\!\cdots\!25}{29\!\cdots\!74}a^{4}+\frac{27\!\cdots\!71}{36\!\cdots\!57}a^{3}-\frac{43\!\cdots\!97}{14\!\cdots\!37}a^{2}+\frac{11\!\cdots\!72}{14\!\cdots\!37}a-\frac{60\!\cdots\!93}{25\!\cdots\!69}$, $\frac{14\!\cdots\!84}{49\!\cdots\!79}a^{31}-\frac{13\!\cdots\!21}{29\!\cdots\!74}a^{30}+\frac{26\!\cdots\!37}{59\!\cdots\!48}a^{29}-\frac{37\!\cdots\!99}{11\!\cdots\!96}a^{28}+\frac{10\!\cdots\!15}{59\!\cdots\!48}a^{27}-\frac{50\!\cdots\!79}{59\!\cdots\!48}a^{26}+\frac{41\!\cdots\!97}{11\!\cdots\!96}a^{25}-\frac{36\!\cdots\!79}{29\!\cdots\!74}a^{24}+\frac{11\!\cdots\!25}{29\!\cdots\!74}a^{23}-\frac{21\!\cdots\!09}{19\!\cdots\!16}a^{22}+\frac{32\!\cdots\!19}{11\!\cdots\!96}a^{21}-\frac{36\!\cdots\!99}{59\!\cdots\!48}a^{20}+\frac{73\!\cdots\!15}{59\!\cdots\!48}a^{19}-\frac{12\!\cdots\!77}{59\!\cdots\!48}a^{18}+\frac{38\!\cdots\!51}{11\!\cdots\!96}a^{17}-\frac{60\!\cdots\!29}{14\!\cdots\!37}a^{16}+\frac{59\!\cdots\!84}{14\!\cdots\!37}a^{15}-\frac{14\!\cdots\!55}{59\!\cdots\!48}a^{14}-\frac{44\!\cdots\!25}{11\!\cdots\!96}a^{13}+\frac{14\!\cdots\!31}{39\!\cdots\!32}a^{12}-\frac{76\!\cdots\!75}{14\!\cdots\!37}a^{11}+\frac{59\!\cdots\!40}{14\!\cdots\!37}a^{10}-\frac{47\!\cdots\!31}{98\!\cdots\!58}a^{9}-\frac{16\!\cdots\!10}{49\!\cdots\!79}a^{8}+\frac{28\!\cdots\!86}{49\!\cdots\!79}a^{7}-\frac{87\!\cdots\!46}{14\!\cdots\!37}a^{6}+\frac{21\!\cdots\!59}{49\!\cdots\!79}a^{5}-\frac{73\!\cdots\!93}{29\!\cdots\!74}a^{4}+\frac{15\!\cdots\!21}{14\!\cdots\!37}a^{3}-\frac{18\!\cdots\!36}{49\!\cdots\!79}a^{2}+\frac{56\!\cdots\!02}{49\!\cdots\!79}a-\frac{20\!\cdots\!32}{77\!\cdots\!07}$, $\frac{11\!\cdots\!63}{36\!\cdots\!57}a^{31}-\frac{15\!\cdots\!69}{29\!\cdots\!74}a^{30}+\frac{50\!\cdots\!81}{98\!\cdots\!58}a^{29}-\frac{43\!\cdots\!71}{11\!\cdots\!96}a^{28}+\frac{63\!\cdots\!83}{29\!\cdots\!74}a^{27}-\frac{15\!\cdots\!12}{14\!\cdots\!37}a^{26}+\frac{21\!\cdots\!46}{49\!\cdots\!79}a^{25}-\frac{62\!\cdots\!67}{39\!\cdots\!32}a^{24}+\frac{25\!\cdots\!09}{49\!\cdots\!79}a^{23}-\frac{28\!\cdots\!71}{19\!\cdots\!16}a^{22}+\frac{37\!\cdots\!11}{98\!\cdots\!58}a^{21}-\frac{34\!\cdots\!75}{39\!\cdots\!32}a^{20}+\frac{52\!\cdots\!31}{29\!\cdots\!74}a^{19}-\frac{94\!\cdots\!61}{29\!\cdots\!74}a^{18}+\frac{74\!\cdots\!61}{14\!\cdots\!37}a^{17}-\frac{26\!\cdots\!11}{39\!\cdots\!32}a^{16}+\frac{10\!\cdots\!63}{14\!\cdots\!37}a^{15}-\frac{32\!\cdots\!83}{59\!\cdots\!48}a^{14}+\frac{17\!\cdots\!65}{14\!\cdots\!37}a^{13}+\frac{64\!\cdots\!57}{14\!\cdots\!37}a^{12}-\frac{12\!\cdots\!98}{14\!\cdots\!37}a^{11}+\frac{11\!\cdots\!23}{14\!\cdots\!37}a^{10}-\frac{16\!\cdots\!64}{49\!\cdots\!79}a^{9}-\frac{71\!\cdots\!33}{19\!\cdots\!16}a^{8}+\frac{13\!\cdots\!12}{14\!\cdots\!37}a^{7}-\frac{51\!\cdots\!06}{49\!\cdots\!79}a^{6}+\frac{13\!\cdots\!36}{14\!\cdots\!37}a^{5}-\frac{16\!\cdots\!65}{29\!\cdots\!74}a^{4}+\frac{12\!\cdots\!48}{49\!\cdots\!79}a^{3}-\frac{12\!\cdots\!32}{14\!\cdots\!37}a^{2}+\frac{79\!\cdots\!36}{36\!\cdots\!57}a-\frac{19\!\cdots\!42}{77\!\cdots\!07}$, $\frac{11\!\cdots\!48}{14\!\cdots\!37}a^{31}-\frac{35\!\cdots\!63}{29\!\cdots\!74}a^{30}+\frac{57\!\cdots\!88}{49\!\cdots\!79}a^{29}-\frac{47\!\cdots\!89}{59\!\cdots\!48}a^{28}+\frac{13\!\cdots\!37}{29\!\cdots\!74}a^{27}-\frac{12\!\cdots\!11}{59\!\cdots\!48}a^{26}+\frac{25\!\cdots\!63}{29\!\cdots\!74}a^{25}-\frac{88\!\cdots\!61}{28\!\cdots\!56}a^{24}+\frac{14\!\cdots\!90}{14\!\cdots\!37}a^{23}-\frac{39\!\cdots\!26}{14\!\cdots\!37}a^{22}+\frac{33\!\cdots\!68}{49\!\cdots\!79}a^{21}-\frac{17\!\cdots\!33}{11\!\cdots\!96}a^{20}+\frac{88\!\cdots\!31}{29\!\cdots\!74}a^{19}-\frac{30\!\cdots\!11}{59\!\cdots\!48}a^{18}+\frac{76\!\cdots\!09}{98\!\cdots\!58}a^{17}-\frac{11\!\cdots\!31}{11\!\cdots\!96}a^{16}+\frac{14\!\cdots\!97}{14\!\cdots\!37}a^{15}-\frac{87\!\cdots\!27}{14\!\cdots\!37}a^{14}-\frac{14\!\cdots\!65}{14\!\cdots\!37}a^{13}+\frac{10\!\cdots\!71}{11\!\cdots\!96}a^{12}-\frac{18\!\cdots\!01}{14\!\cdots\!37}a^{11}+\frac{14\!\cdots\!54}{14\!\cdots\!37}a^{10}-\frac{19\!\cdots\!06}{14\!\cdots\!37}a^{9}-\frac{11\!\cdots\!91}{14\!\cdots\!37}a^{8}+\frac{20\!\cdots\!84}{14\!\cdots\!37}a^{7}-\frac{51\!\cdots\!78}{36\!\cdots\!57}a^{6}+\frac{15\!\cdots\!32}{14\!\cdots\!37}a^{5}-\frac{30\!\cdots\!07}{49\!\cdots\!79}a^{4}+\frac{11\!\cdots\!60}{49\!\cdots\!79}a^{3}-\frac{16\!\cdots\!34}{36\!\cdots\!57}a^{2}+\frac{13\!\cdots\!48}{14\!\cdots\!37}a-\frac{10\!\cdots\!01}{77\!\cdots\!07}$, $\frac{95\!\cdots\!92}{14\!\cdots\!37}a^{31}-\frac{39\!\cdots\!85}{39\!\cdots\!32}a^{30}+\frac{57\!\cdots\!41}{59\!\cdots\!48}a^{29}-\frac{81\!\cdots\!21}{11\!\cdots\!96}a^{28}+\frac{57\!\cdots\!18}{14\!\cdots\!37}a^{27}-\frac{21\!\cdots\!53}{11\!\cdots\!96}a^{26}+\frac{36\!\cdots\!71}{48\!\cdots\!76}a^{25}-\frac{80\!\cdots\!25}{29\!\cdots\!74}a^{24}+\frac{12\!\cdots\!25}{14\!\cdots\!37}a^{23}-\frac{28\!\cdots\!77}{11\!\cdots\!96}a^{22}+\frac{36\!\cdots\!81}{59\!\cdots\!48}a^{21}-\frac{67\!\cdots\!49}{49\!\cdots\!79}a^{20}+\frac{13\!\cdots\!17}{49\!\cdots\!79}a^{19}-\frac{18\!\cdots\!31}{39\!\cdots\!32}a^{18}+\frac{14\!\cdots\!21}{19\!\cdots\!16}a^{17}-\frac{52\!\cdots\!65}{59\!\cdots\!48}a^{16}+\frac{43\!\cdots\!85}{49\!\cdots\!79}a^{15}-\frac{15\!\cdots\!07}{29\!\cdots\!74}a^{14}-\frac{36\!\cdots\!97}{29\!\cdots\!74}a^{13}+\frac{97\!\cdots\!49}{11\!\cdots\!96}a^{12}-\frac{57\!\cdots\!71}{49\!\cdots\!79}a^{11}+\frac{51\!\cdots\!29}{59\!\cdots\!48}a^{10}-\frac{81\!\cdots\!86}{14\!\cdots\!37}a^{9}-\frac{48\!\cdots\!49}{59\!\cdots\!48}a^{8}+\frac{63\!\cdots\!92}{49\!\cdots\!79}a^{7}-\frac{12\!\cdots\!39}{98\!\cdots\!58}a^{6}+\frac{45\!\cdots\!92}{49\!\cdots\!79}a^{5}-\frac{72\!\cdots\!62}{14\!\cdots\!37}a^{4}+\frac{27\!\cdots\!12}{14\!\cdots\!37}a^{3}-\frac{80\!\cdots\!12}{14\!\cdots\!37}a^{2}+\frac{74\!\cdots\!04}{49\!\cdots\!79}a+\frac{27\!\cdots\!25}{77\!\cdots\!07}$, $\frac{60\!\cdots\!39}{14\!\cdots\!37}a^{31}-\frac{90\!\cdots\!05}{14\!\cdots\!37}a^{30}+\frac{11\!\cdots\!39}{19\!\cdots\!16}a^{29}-\frac{81\!\cdots\!07}{19\!\cdots\!16}a^{28}+\frac{11\!\cdots\!39}{49\!\cdots\!79}a^{27}-\frac{42\!\cdots\!99}{39\!\cdots\!32}a^{26}+\frac{26\!\cdots\!25}{59\!\cdots\!48}a^{25}-\frac{46\!\cdots\!39}{29\!\cdots\!74}a^{24}+\frac{72\!\cdots\!44}{14\!\cdots\!37}a^{23}-\frac{16\!\cdots\!03}{11\!\cdots\!96}a^{22}+\frac{66\!\cdots\!57}{19\!\cdots\!16}a^{21}-\frac{44\!\cdots\!39}{59\!\cdots\!48}a^{20}+\frac{21\!\cdots\!47}{14\!\cdots\!37}a^{19}-\frac{30\!\cdots\!39}{11\!\cdots\!96}a^{18}+\frac{22\!\cdots\!71}{59\!\cdots\!48}a^{17}-\frac{27\!\cdots\!27}{59\!\cdots\!48}a^{16}+\frac{65\!\cdots\!87}{14\!\cdots\!37}a^{15}-\frac{99\!\cdots\!87}{39\!\cdots\!32}a^{14}-\frac{41\!\cdots\!18}{49\!\cdots\!79}a^{13}+\frac{63\!\cdots\!86}{14\!\cdots\!37}a^{12}-\frac{85\!\cdots\!48}{14\!\cdots\!37}a^{11}+\frac{12\!\cdots\!47}{29\!\cdots\!74}a^{10}+\frac{34\!\cdots\!71}{14\!\cdots\!37}a^{9}-\frac{24\!\cdots\!01}{59\!\cdots\!48}a^{8}+\frac{31\!\cdots\!52}{49\!\cdots\!79}a^{7}-\frac{18\!\cdots\!27}{29\!\cdots\!74}a^{6}+\frac{23\!\cdots\!68}{49\!\cdots\!79}a^{5}-\frac{76\!\cdots\!83}{29\!\cdots\!74}a^{4}+\frac{57\!\cdots\!56}{49\!\cdots\!79}a^{3}-\frac{65\!\cdots\!20}{14\!\cdots\!37}a^{2}+\frac{73\!\cdots\!12}{49\!\cdots\!79}a-\frac{11\!\cdots\!05}{25\!\cdots\!69}$, $\frac{64\!\cdots\!93}{98\!\cdots\!58}a^{31}-\frac{41\!\cdots\!81}{39\!\cdots\!32}a^{30}+\frac{41\!\cdots\!59}{39\!\cdots\!32}a^{29}-\frac{14\!\cdots\!69}{19\!\cdots\!16}a^{28}+\frac{17\!\cdots\!23}{39\!\cdots\!32}a^{27}-\frac{20\!\cdots\!47}{98\!\cdots\!58}a^{26}+\frac{17\!\cdots\!67}{19\!\cdots\!16}a^{25}-\frac{12\!\cdots\!73}{39\!\cdots\!32}a^{24}+\frac{40\!\cdots\!21}{39\!\cdots\!32}a^{23}-\frac{14\!\cdots\!47}{49\!\cdots\!79}a^{22}+\frac{74\!\cdots\!07}{98\!\cdots\!58}a^{21}-\frac{67\!\cdots\!83}{39\!\cdots\!32}a^{20}+\frac{13\!\cdots\!13}{39\!\cdots\!32}a^{19}-\frac{61\!\cdots\!87}{98\!\cdots\!58}a^{18}+\frac{19\!\cdots\!83}{19\!\cdots\!16}a^{17}-\frac{50\!\cdots\!73}{39\!\cdots\!32}a^{16}+\frac{54\!\cdots\!75}{39\!\cdots\!32}a^{15}-\frac{39\!\cdots\!03}{39\!\cdots\!32}a^{14}+\frac{71\!\cdots\!41}{39\!\cdots\!32}a^{13}+\frac{34\!\cdots\!01}{39\!\cdots\!32}a^{12}-\frac{38\!\cdots\!75}{24\!\cdots\!38}a^{11}+\frac{73\!\cdots\!30}{49\!\cdots\!79}a^{10}-\frac{27\!\cdots\!26}{49\!\cdots\!79}a^{9}-\frac{14\!\cdots\!55}{19\!\cdots\!16}a^{8}+\frac{16\!\cdots\!23}{98\!\cdots\!58}a^{7}-\frac{19\!\cdots\!21}{98\!\cdots\!58}a^{6}+\frac{81\!\cdots\!16}{49\!\cdots\!79}a^{5}-\frac{10\!\cdots\!83}{98\!\cdots\!58}a^{4}+\frac{24\!\cdots\!86}{49\!\cdots\!79}a^{3}-\frac{94\!\cdots\!34}{49\!\cdots\!79}a^{2}+\frac{25\!\cdots\!12}{49\!\cdots\!79}a-\frac{34\!\cdots\!10}{25\!\cdots\!69}$, $\frac{12\!\cdots\!95}{11\!\cdots\!96}a^{31}-\frac{20\!\cdots\!93}{11\!\cdots\!96}a^{30}+\frac{20\!\cdots\!87}{11\!\cdots\!96}a^{29}-\frac{48\!\cdots\!91}{39\!\cdots\!32}a^{28}+\frac{84\!\cdots\!01}{11\!\cdots\!96}a^{27}-\frac{40\!\cdots\!01}{11\!\cdots\!96}a^{26}+\frac{71\!\cdots\!24}{49\!\cdots\!79}a^{25}-\frac{77\!\cdots\!14}{14\!\cdots\!37}a^{24}+\frac{20\!\cdots\!53}{11\!\cdots\!96}a^{23}-\frac{57\!\cdots\!73}{11\!\cdots\!96}a^{22}+\frac{24\!\cdots\!47}{19\!\cdots\!16}a^{21}-\frac{17\!\cdots\!27}{59\!\cdots\!48}a^{20}+\frac{70\!\cdots\!29}{11\!\cdots\!96}a^{19}-\frac{42\!\cdots\!57}{39\!\cdots\!32}a^{18}+\frac{83\!\cdots\!77}{49\!\cdots\!79}a^{17}-\frac{22\!\cdots\!37}{98\!\cdots\!58}a^{16}+\frac{24\!\cdots\!23}{98\!\cdots\!58}a^{15}-\frac{11\!\cdots\!49}{59\!\cdots\!48}a^{14}+\frac{55\!\cdots\!91}{11\!\cdots\!96}a^{13}+\frac{16\!\cdots\!03}{11\!\cdots\!96}a^{12}-\frac{16\!\cdots\!29}{59\!\cdots\!48}a^{11}+\frac{81\!\cdots\!31}{29\!\cdots\!74}a^{10}-\frac{57\!\cdots\!79}{49\!\cdots\!79}a^{9}-\frac{55\!\cdots\!91}{49\!\cdots\!79}a^{8}+\frac{87\!\cdots\!21}{29\!\cdots\!74}a^{7}-\frac{10\!\cdots\!75}{29\!\cdots\!74}a^{6}+\frac{44\!\cdots\!85}{14\!\cdots\!37}a^{5}-\frac{96\!\cdots\!51}{49\!\cdots\!79}a^{4}+\frac{13\!\cdots\!76}{14\!\cdots\!37}a^{3}-\frac{17\!\cdots\!87}{49\!\cdots\!79}a^{2}+\frac{15\!\cdots\!37}{14\!\cdots\!37}a-\frac{17\!\cdots\!92}{77\!\cdots\!07}$, $\frac{13\!\cdots\!91}{39\!\cdots\!32}a^{31}-\frac{28\!\cdots\!49}{49\!\cdots\!79}a^{30}+\frac{72\!\cdots\!29}{11\!\cdots\!96}a^{29}-\frac{54\!\cdots\!67}{11\!\cdots\!96}a^{28}+\frac{81\!\cdots\!75}{29\!\cdots\!74}a^{27}-\frac{16\!\cdots\!47}{11\!\cdots\!96}a^{26}+\frac{70\!\cdots\!73}{11\!\cdots\!96}a^{25}-\frac{26\!\cdots\!49}{11\!\cdots\!96}a^{24}+\frac{10\!\cdots\!52}{14\!\cdots\!37}a^{23}-\frac{86\!\cdots\!73}{39\!\cdots\!32}a^{22}+\frac{68\!\cdots\!81}{11\!\cdots\!96}a^{21}-\frac{53\!\cdots\!07}{39\!\cdots\!32}a^{20}+\frac{56\!\cdots\!85}{19\!\cdots\!16}a^{19}-\frac{63\!\cdots\!01}{11\!\cdots\!96}a^{18}+\frac{10\!\cdots\!17}{11\!\cdots\!96}a^{17}-\frac{48\!\cdots\!21}{39\!\cdots\!32}a^{16}+\frac{16\!\cdots\!55}{11\!\cdots\!96}a^{15}-\frac{14\!\cdots\!93}{11\!\cdots\!96}a^{14}+\frac{94\!\cdots\!79}{19\!\cdots\!16}a^{13}+\frac{14\!\cdots\!13}{24\!\cdots\!38}a^{12}-\frac{31\!\cdots\!61}{19\!\cdots\!16}a^{11}+\frac{53\!\cdots\!29}{29\!\cdots\!74}a^{10}-\frac{59\!\cdots\!17}{59\!\cdots\!48}a^{9}-\frac{12\!\cdots\!41}{29\!\cdots\!74}a^{8}+\frac{24\!\cdots\!42}{14\!\cdots\!37}a^{7}-\frac{32\!\cdots\!79}{14\!\cdots\!37}a^{6}+\frac{28\!\cdots\!62}{14\!\cdots\!37}a^{5}-\frac{11\!\cdots\!69}{98\!\cdots\!58}a^{4}+\frac{25\!\cdots\!40}{49\!\cdots\!79}a^{3}-\frac{18\!\cdots\!68}{14\!\cdots\!37}a^{2}+\frac{94\!\cdots\!96}{14\!\cdots\!37}a+\frac{21\!\cdots\!07}{25\!\cdots\!69}$, $\frac{48\!\cdots\!65}{59\!\cdots\!48}a^{31}-\frac{66\!\cdots\!89}{49\!\cdots\!79}a^{30}+\frac{15\!\cdots\!47}{11\!\cdots\!96}a^{29}-\frac{38\!\cdots\!55}{39\!\cdots\!32}a^{28}+\frac{65\!\cdots\!21}{11\!\cdots\!96}a^{27}-\frac{15\!\cdots\!25}{59\!\cdots\!48}a^{26}+\frac{12\!\cdots\!01}{11\!\cdots\!96}a^{25}-\frac{57\!\cdots\!48}{14\!\cdots\!37}a^{24}+\frac{48\!\cdots\!99}{39\!\cdots\!32}a^{23}-\frac{20\!\cdots\!45}{59\!\cdots\!48}a^{22}+\frac{33\!\cdots\!29}{39\!\cdots\!32}a^{21}-\frac{36\!\cdots\!63}{19\!\cdots\!16}a^{20}+\frac{13\!\cdots\!63}{39\!\cdots\!32}a^{19}-\frac{85\!\cdots\!63}{14\!\cdots\!37}a^{18}+\frac{93\!\cdots\!47}{11\!\cdots\!96}a^{17}-\frac{49\!\cdots\!43}{59\!\cdots\!48}a^{16}+\frac{59\!\cdots\!17}{11\!\cdots\!96}a^{15}+\frac{14\!\cdots\!87}{59\!\cdots\!48}a^{14}-\frac{71\!\cdots\!11}{59\!\cdots\!48}a^{13}+\frac{20\!\cdots\!83}{11\!\cdots\!96}a^{12}-\frac{26\!\cdots\!81}{19\!\cdots\!16}a^{11}-\frac{25\!\cdots\!59}{19\!\cdots\!16}a^{10}+\frac{54\!\cdots\!35}{29\!\cdots\!74}a^{9}-\frac{15\!\cdots\!05}{59\!\cdots\!48}a^{8}+\frac{62\!\cdots\!35}{29\!\cdots\!74}a^{7}-\frac{13\!\cdots\!35}{14\!\cdots\!37}a^{6}-\frac{23\!\cdots\!41}{29\!\cdots\!74}a^{5}+\frac{16\!\cdots\!47}{29\!\cdots\!74}a^{4}-\frac{77\!\cdots\!70}{14\!\cdots\!37}a^{3}+\frac{34\!\cdots\!44}{14\!\cdots\!37}a^{2}-\frac{14\!\cdots\!90}{14\!\cdots\!37}a+\frac{17\!\cdots\!68}{77\!\cdots\!07}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 11039633378602.484 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 11039633378602.484 \cdot 640}{10\cdot\sqrt{613039365036788240314949190025216000000000000000000000000}}\cr\approx \mathstrut & 0.168371405507861 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6756*x^28 - 32872*x^27 + 137688*x^26 - 504816*x^25 + 1639376*x^24 - 4749552*x^23 + 12315372*x^22 - 28585976*x^21 + 59189458*x^20 - 108563512*x^19 + 174237344*x^18 - 239583744*x^17 + 271203819*x^16 - 229422992*x^15 + 95660524*x^14 + 97892432*x^13 - 263767222*x^12 + 302963088*x^11 - 176472000*x^10 - 53416448*x^9 + 268061612*x^8 - 376049408*x^7 + 358649568*x^6 - 258848640*x^5 + 145683560*x^4 - 64335936*x^3 + 22597024*x^2 - 5903488*x + 1225456);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}, \sqrt{-35})\), 4.0.2508800.1, \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-7})\), 4.0.100352.5, 4.4.51200.1, \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{-14})\), 4.0.256000.2, 4.4.12544000.1, 4.0.256000.4, 4.4.12544000.2, 4.4.6125.1, \(\Q(\zeta_{5})\), 4.4.392000.1, 4.0.8000.2, 8.0.6294077440000.6, 8.0.6146560000.2, 8.0.6294077440000.2, 8.0.6294077440000.7, 8.0.6294077440000.5, 8.8.2621440000.1, 8.0.10070523904.2, 8.0.157351936000000.59, 8.0.157351936000000.61, 8.0.37515625.1, 8.0.153664000000.2, 8.0.65536000000.1, 8.8.157351936000000.4, 8.8.153664000000.1, 8.0.64000000.2, 8.0.157351936000000.37, 8.0.157351936000000.14, 8.0.153664000000.1, 8.0.153664000000.5, 16.0.39615410820716953600000000.1, 16.0.24759631762948096000000000000.6, 16.0.23612624896000000000000.2, 16.0.24759631762948096000000000000.3, 16.0.24759631762948096000000000000.4, 16.0.4294967296000000000000.1, 16.16.24759631762948096000000000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{8}$ R R ${\href{/padicField/11.4.0.1}{4} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{16}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$4$$4$$44$
Deg $16$$4$$4$$44$
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(7\) Copy content Toggle raw display 7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$