Properties

Label 32.0.598...000.9
Degree $32$
Signature $[0, 16]$
Discriminant $5.982\times 10^{60}$
Root discriminant \(79.30\)
Ramified primes $2,3,5,13$
Class number $5120$ (GRH)
Class group [2, 2, 2, 8, 80] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181)
 
gp: K = bnfinit(y^32 - 2*y^31 - 49*y^30 + 106*y^29 + 1076*y^28 - 2358*y^27 - 14536*y^26 + 30390*y^25 + 143331*y^24 - 277890*y^23 - 1101976*y^22 + 2047834*y^21 + 6700777*y^20 - 11544686*y^19 - 31683220*y^18 + 41887806*y^17 + 112998102*y^16 - 58409400*y^15 - 309446035*y^14 - 223742052*y^13 + 756846581*y^12 + 1385729356*y^11 - 1693247590*y^10 - 2987674244*y^9 + 2900961157*y^8 + 2487107298*y^7 - 1842800025*y^6 - 102727494*y^5 + 449157015*y^4 - 1413093708*y^3 + 372745611*y^2 - 302934816*y + 531854181, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181)
 

\( x^{32} - 2 x^{31} - 49 x^{30} + 106 x^{29} + 1076 x^{28} - 2358 x^{27} - 14536 x^{26} + 30390 x^{25} + \cdots + 531854181 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5981643090147991811559885370844487936000000000000000000000000\) \(\medspace = 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(79.30\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{3/4}13^{3/4}\approx 79.30044794118675$
Ramified primes:   \(2\), \(3\), \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(780=2^{2}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(131,·)$, $\chi_{780}(649,·)$, $\chi_{780}(779,·)$, $\chi_{780}(493,·)$, $\chi_{780}(623,·)$, $\chi_{780}(157,·)$, $\chi_{780}(671,·)$, $\chi_{780}(421,·)$, $\chi_{780}(551,·)$, $\chi_{780}(47,·)$, $\chi_{780}(181,·)$, $\chi_{780}(311,·)$, $\chi_{780}(313,·)$, $\chi_{780}(287,·)$, $\chi_{780}(577,·)$, $\chi_{780}(707,·)$, $\chi_{780}(73,·)$, $\chi_{780}(203,·)$, $\chi_{780}(337,·)$, $\chi_{780}(83,·)$, $\chi_{780}(469,·)$, $\chi_{780}(599,·)$, $\chi_{780}(733,·)$, $\chi_{780}(443,·)$, $\chi_{780}(229,·)$, $\chi_{780}(359,·)$, $\chi_{780}(109,·)$, $\chi_{780}(697,·)$, $\chi_{780}(239,·)$, $\chi_{780}(467,·)$, $\chi_{780}(541,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3}a^{18}-\frac{1}{3}a^{16}+\frac{1}{3}a^{12}-\frac{1}{3}a^{10}+\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{19}-\frac{1}{3}a^{17}+\frac{1}{3}a^{13}-\frac{1}{3}a^{11}+\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{12}a^{20}-\frac{1}{6}a^{18}+\frac{1}{12}a^{16}-\frac{1}{2}a^{15}+\frac{1}{3}a^{14}-\frac{1}{2}a^{13}-\frac{1}{6}a^{12}-\frac{1}{2}a^{11}-\frac{1}{12}a^{10}-\frac{1}{2}a^{9}+\frac{5}{12}a^{8}-\frac{1}{2}a^{7}+\frac{1}{6}a^{6}-\frac{1}{12}a^{4}-\frac{1}{2}a^{3}+\frac{5}{12}a^{2}-\frac{1}{4}$, $\frac{1}{12}a^{21}-\frac{1}{6}a^{19}+\frac{1}{12}a^{17}-\frac{1}{2}a^{16}+\frac{1}{3}a^{15}-\frac{1}{2}a^{14}-\frac{1}{6}a^{13}-\frac{1}{2}a^{12}-\frac{1}{12}a^{11}-\frac{1}{2}a^{10}+\frac{5}{12}a^{9}-\frac{1}{2}a^{8}+\frac{1}{6}a^{7}-\frac{1}{12}a^{5}-\frac{1}{2}a^{4}+\frac{5}{12}a^{3}-\frac{1}{4}a$, $\frac{1}{12}a^{22}+\frac{1}{12}a^{18}-\frac{1}{2}a^{17}+\frac{1}{6}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{12}a^{12}-\frac{1}{2}a^{11}-\frac{1}{12}a^{10}-\frac{1}{2}a^{9}+\frac{1}{3}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{12}a^{4}-\frac{1}{12}a^{2}-\frac{1}{2}$, $\frac{1}{36}a^{23}-\frac{1}{36}a^{22}-\frac{1}{12}a^{19}+\frac{1}{36}a^{18}-\frac{1}{3}a^{17}-\frac{1}{9}a^{16}-\frac{1}{3}a^{15}-\frac{1}{3}a^{14}+\frac{1}{36}a^{13}+\frac{1}{12}a^{12}+\frac{1}{4}a^{11}-\frac{1}{36}a^{10}-\frac{1}{6}a^{9}+\frac{4}{9}a^{8}+\frac{1}{12}a^{7}-\frac{1}{4}a^{6}-\frac{5}{12}a^{5}-\frac{7}{36}a^{4}+\frac{7}{36}a^{3}-\frac{1}{12}a^{2}+\frac{1}{6}a-\frac{1}{2}$, $\frac{1}{36}a^{24}-\frac{1}{36}a^{22}-\frac{1}{18}a^{19}-\frac{5}{36}a^{18}-\frac{4}{9}a^{17}+\frac{11}{36}a^{16}-\frac{1}{6}a^{15}+\frac{1}{36}a^{14}-\frac{7}{18}a^{13}-\frac{1}{2}a^{12}-\frac{5}{18}a^{11}+\frac{7}{18}a^{10}-\frac{2}{9}a^{9}+\frac{5}{18}a^{8}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{7}{18}a^{5}-\frac{5}{12}a^{4}-\frac{7}{18}a^{3}-\frac{1}{6}a^{2}-\frac{1}{3}a+\frac{1}{4}$, $\frac{1}{36}a^{25}-\frac{1}{36}a^{22}+\frac{1}{36}a^{20}+\frac{1}{9}a^{19}+\frac{1}{12}a^{18}-\frac{13}{36}a^{17}+\frac{5}{36}a^{16}+\frac{7}{36}a^{15}-\frac{7}{18}a^{14}+\frac{13}{36}a^{13}+\frac{11}{36}a^{12}-\frac{7}{36}a^{11}-\frac{1}{18}a^{9}-\frac{5}{36}a^{8}+\frac{1}{12}a^{7}+\frac{11}{36}a^{6}-\frac{1}{6}a^{5}-\frac{1}{3}a^{4}-\frac{5}{36}a^{3}-\frac{1}{3}a^{2}+\frac{5}{12}a+\frac{1}{4}$, $\frac{1}{1991916}a^{26}+\frac{3178}{497979}a^{25}-\frac{125}{663972}a^{24}-\frac{26305}{1991916}a^{23}+\frac{20177}{497979}a^{22}+\frac{16033}{1991916}a^{21}+\frac{14191}{995958}a^{20}+\frac{73897}{1991916}a^{19}-\frac{16633}{1991916}a^{18}+\frac{907063}{1991916}a^{17}-\frac{36727}{331986}a^{16}+\frac{289705}{995958}a^{15}+\frac{166910}{497979}a^{14}+\frac{78803}{221324}a^{13}-\frac{28813}{995958}a^{12}+\frac{84272}{497979}a^{11}-\frac{132635}{1991916}a^{10}+\frac{690269}{1991916}a^{9}+\frac{28123}{1991916}a^{8}+\frac{326315}{1991916}a^{7}+\frac{650255}{1991916}a^{6}-\frac{16292}{165993}a^{5}+\frac{111109}{1991916}a^{4}-\frac{295507}{995958}a^{3}+\frac{51825}{110662}a^{2}+\frac{142643}{663972}a+\frac{93057}{221324}$, $\frac{1}{1991916}a^{27}+\frac{737}{55331}a^{25}-\frac{17771}{1991916}a^{24}-\frac{2009}{663972}a^{23}+\frac{29335}{995958}a^{22}+\frac{28145}{995958}a^{21}-\frac{23543}{663972}a^{20}+\frac{72769}{497979}a^{19}+\frac{65509}{497979}a^{18}+\frac{230513}{1991916}a^{17}+\frac{213818}{497979}a^{16}+\frac{593785}{1991916}a^{15}+\frac{891637}{1991916}a^{14}-\frac{169717}{995958}a^{13}-\frac{30319}{663972}a^{12}-\frac{583975}{1991916}a^{11}+\frac{433075}{995958}a^{10}+\frac{382547}{1991916}a^{9}-\frac{620297}{1991916}a^{8}+\frac{3897}{221324}a^{7}+\frac{311213}{663972}a^{6}+\frac{27715}{995958}a^{5}+\frac{83751}{221324}a^{4}+\frac{15920}{497979}a^{3}+\frac{13445}{331986}a^{2}-\frac{47273}{165993}a+\frac{9049}{55331}$, $\frac{1}{5975748}a^{28}+\frac{1}{5975748}a^{27}-\frac{1}{5975748}a^{26}-\frac{18145}{2987874}a^{25}+\frac{77159}{5975748}a^{24}+\frac{881}{1991916}a^{23}-\frac{56035}{5975748}a^{22}+\frac{15677}{497979}a^{21}-\frac{4305}{221324}a^{20}-\frac{3073}{331986}a^{19}+\frac{219227}{5975748}a^{18}+\frac{920959}{5975748}a^{17}+\frac{1819219}{5975748}a^{16}+\frac{2548207}{5975748}a^{15}-\frac{2597479}{5975748}a^{14}-\frac{33825}{110662}a^{13}-\frac{28017}{221324}a^{12}-\frac{242681}{663972}a^{11}-\frac{535033}{5975748}a^{10}-\frac{637357}{1991916}a^{9}+\frac{749027}{5975748}a^{8}-\frac{1940177}{5975748}a^{7}-\frac{2178955}{5975748}a^{6}-\frac{690236}{1493937}a^{5}+\frac{1959973}{5975748}a^{4}+\frac{63571}{995958}a^{3}+\frac{304837}{1991916}a^{2}+\frac{20939}{55331}a-\frac{65303}{663972}$, $\frac{1}{782822988}a^{29}+\frac{1}{260940996}a^{28}-\frac{11}{782822988}a^{27}-\frac{53}{391411494}a^{26}+\frac{2584894}{195705747}a^{25}-\frac{1432463}{195705747}a^{24}+\frac{3604553}{782822988}a^{23}+\frac{11508349}{782822988}a^{22}+\frac{8667341}{260940996}a^{21}+\frac{422828}{65235249}a^{20}-\frac{99770641}{782822988}a^{19}+\frac{16113767}{195705747}a^{18}+\frac{17201516}{65235249}a^{17}-\frac{8904023}{130470498}a^{16}-\frac{49845461}{195705747}a^{15}-\frac{178964507}{782822988}a^{14}+\frac{51635843}{130470498}a^{13}-\frac{73922231}{260940996}a^{12}-\frac{73041106}{195705747}a^{11}+\frac{198422623}{782822988}a^{10}-\frac{9878215}{782822988}a^{9}+\frac{252460883}{782822988}a^{8}+\frac{128951603}{391411494}a^{7}-\frac{12503267}{391411494}a^{6}-\frac{19970417}{86980332}a^{5}-\frac{338315845}{782822988}a^{4}-\frac{57623443}{130470498}a^{3}+\frac{15311377}{130470498}a^{2}+\frac{13122817}{43490166}a+\frac{30170351}{86980332}$, $\frac{1}{286513213608}a^{30}+\frac{91}{286513213608}a^{29}-\frac{16777}{286513213608}a^{28}+\frac{13349}{143256606804}a^{27}+\frac{58931}{286513213608}a^{26}+\frac{791381351}{95504404536}a^{25}-\frac{1463871173}{143256606804}a^{24}+\frac{764191867}{95504404536}a^{23}-\frac{312400655}{47752202268}a^{22}+\frac{2466955}{95504404536}a^{21}-\frac{805502545}{286513213608}a^{20}-\frac{14155813225}{143256606804}a^{19}-\frac{11142517675}{143256606804}a^{18}-\frac{4318056295}{143256606804}a^{17}+\frac{5658423911}{71628303402}a^{16}+\frac{14709855911}{47752202268}a^{15}-\frac{18027176885}{47752202268}a^{14}+\frac{10214820875}{23876101134}a^{13}-\frac{120163912585}{286513213608}a^{12}+\frac{4756301975}{95504404536}a^{11}+\frac{104230605983}{286513213608}a^{10}+\frac{4758143677}{71628303402}a^{9}-\frac{72042419383}{286513213608}a^{8}-\frac{43937172767}{286513213608}a^{7}-\frac{110691053201}{286513213608}a^{6}+\frac{6422461781}{23876101134}a^{5}-\frac{845803211}{11938050567}a^{4}-\frac{873347}{60753438}a^{3}+\frac{8394092693}{31834801512}a^{2}-\frac{3801654893}{10611600504}a+\frac{27252187}{173960664}$, $\frac{1}{42\!\cdots\!04}a^{31}+\frac{58\!\cdots\!49}{42\!\cdots\!04}a^{30}-\frac{11\!\cdots\!49}{42\!\cdots\!04}a^{29}-\frac{51\!\cdots\!57}{10\!\cdots\!26}a^{28}-\frac{90\!\cdots\!15}{42\!\cdots\!04}a^{27}+\frac{19\!\cdots\!91}{15\!\cdots\!52}a^{26}-\frac{10\!\cdots\!01}{21\!\cdots\!52}a^{25}+\frac{25\!\cdots\!17}{14\!\cdots\!68}a^{24}-\frac{12\!\cdots\!63}{35\!\cdots\!42}a^{23}-\frac{46\!\cdots\!53}{14\!\cdots\!68}a^{22}-\frac{13\!\cdots\!55}{42\!\cdots\!04}a^{21}+\frac{25\!\cdots\!47}{21\!\cdots\!52}a^{20}+\frac{17\!\cdots\!69}{21\!\cdots\!52}a^{19}+\frac{17\!\cdots\!47}{10\!\cdots\!26}a^{18}-\frac{16\!\cdots\!45}{10\!\cdots\!26}a^{17}-\frac{16\!\cdots\!00}{17\!\cdots\!21}a^{16}-\frac{14\!\cdots\!79}{35\!\cdots\!42}a^{15}-\frac{88\!\cdots\!59}{35\!\cdots\!42}a^{14}+\frac{16\!\cdots\!39}{42\!\cdots\!04}a^{13}+\frac{33\!\cdots\!01}{14\!\cdots\!68}a^{12}-\frac{58\!\cdots\!77}{42\!\cdots\!04}a^{11}-\frac{11\!\cdots\!09}{21\!\cdots\!52}a^{10}+\frac{53\!\cdots\!05}{42\!\cdots\!04}a^{9}-\frac{42\!\cdots\!97}{42\!\cdots\!04}a^{8}+\frac{12\!\cdots\!53}{42\!\cdots\!04}a^{7}+\frac{70\!\cdots\!91}{19\!\cdots\!69}a^{6}-\frac{17\!\cdots\!13}{23\!\cdots\!28}a^{5}-\frac{25\!\cdots\!43}{11\!\cdots\!14}a^{4}-\frac{22\!\cdots\!35}{15\!\cdots\!52}a^{3}+\frac{14\!\cdots\!47}{15\!\cdots\!52}a^{2}-\frac{29\!\cdots\!67}{15\!\cdots\!52}a-\frac{13\!\cdots\!01}{42\!\cdots\!72}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{80}$, which has order $5120$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{23690573539829165086326814770473220733983402983535547623858187481207424413517897283741001107273}{4852366342992556089593331584014674501973942411619775157611272188790481646282950201155434636446807939612} a^{31} - \frac{54104532676209950998061454474556260413484109793561168384861273775688972922134973026737683907301}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{30} - \frac{2368344484951842764967746022688826764850836529935855019983181072793932734088167003769434786803623}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{29} + \frac{2992230582493791318033018289009635019399236941734836041167989169911953620909213999196423731921931}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{28} + \frac{6695212197801992154859311737474735717933167850904072568245535753324494399713111530843840655164364}{1213091585748139022398332896003668625493485602904943789402818047197620411570737550288858659111701984903} a^{27} - \frac{7318038513348256809335364917270284515010955713081692077122328876580537996996795445238597250463379}{1078303631776123575465184796447705444883098313693283368358060486397884810285100044701207696988179542136} a^{26} - \frac{745501566606053858483846191255675095916759061567993042936635020965997956854984274919875728196804231}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{25} + \frac{133700778640199142518472703577643934974331431737437575317008748639473471122513111785733685307002279}{1617455447664185363197777194671558167324647470539925052537090729596827215427650067051811545482269313204} a^{24} + \frac{2494346850413277329950728908467498685470048424314766011789615022123006800083729708654102524192977139}{3234910895328370726395554389343116334649294941079850105074181459193654430855300134103623090964538626408} a^{23} - \frac{1128195213282226690948960738530505806453887851403969748909545943400421625462753904158901378693086629}{1617455447664185363197777194671558167324647470539925052537090729596827215427650067051811545482269313204} a^{22} - \frac{58060951273375916753620178059131841629175705535205250842059524971760616115895559686696169154669718979}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{21} + \frac{47401031833348119323926679586616628453628176456062357415952493202545784998004794966737781605961442885}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{20} + \frac{179257593145317012367579780448997595012056791271242288388790261248790764739900578709100323380759880963}{4852366342992556089593331584014674501973942411619775157611272188790481646282950201155434636446807939612} a^{19} - \frac{60151561799717601157047815137056947188672424200100158597202310911902909696750180209883343963328329653}{2426183171496278044796665792007337250986971205809887578805636094395240823141475100577717318223403969806} a^{18} - \frac{213729529152613128477652150598183571949908443903025103657460410409123069586892913448477347486510357851}{1213091585748139022398332896003668625493485602904943789402818047197620411570737550288858659111701984903} a^{17} + \frac{43638547518942806311376001442195991370351700521994743467133912687606422804108179187314598718959472931}{808727723832092681598888597335779083662323735269962526268545364798413607713825033525905772741134656602} a^{16} + \frac{969212991586209579514341159628176941849179326135248464035519361004992049983922097595517998732921156357}{1617455447664185363197777194671558167324647470539925052537090729596827215427650067051811545482269313204} a^{15} + \frac{91890014618569820078287319665251906532557629113598370829858458976805965038332179259688957880960623548}{404363861916046340799444298667889541831161867634981263134272682399206803856912516762952886370567328301} a^{14} - \frac{6413732272079313545302050910252873446837977943610794200643071391033134686739048120017414335121240076179}{4852366342992556089593331584014674501973942411619775157611272188790481646282950201155434636446807939612} a^{13} - \frac{7205603780747229603228194327309008636095004852396174309800545424562702720788776514165674938231739081069}{3234910895328370726395554389343116334649294941079850105074181459193654430855300134103623090964538626408} a^{12} + \frac{17463073663333624744044616955939743258151287990160891300624620796134253071092897826675189981934947551961}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{11} + \frac{80831034932412867891432196786340318575089778724843295190740279036582104416974155019924865029984036493001}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{10} - \frac{1352991710790602857534810711764388965079603507611619806718638636725689698823489397502418074151936631677}{1213091585748139022398332896003668625493485602904943789402818047197620411570737550288858659111701984903} a^{9} - \frac{151089265445125764503482594022516722467658503013872059649942764560153265484541022024461656797671708036051}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{8} + \frac{7026101177974658576703705794125003690005063317789140137866423122643334816620773637580391157026648777499}{9704732685985112179186663168029349003947884823239550315222544377580963292565900402310869272893615879224} a^{7} + \frac{13748660125901988326679614381823809256778542831567194702379784409659441010450085266201822507929960343963}{1078303631776123575465184796447705444883098313693283368358060486397884810285100044701207696988179542136} a^{6} + \frac{1047990429523291911966020867138590727427823335391789229456215719501437526435990772333454651781121749295}{539151815888061787732592398223852722441549156846641684179030243198942405142550022350603848494089771068} a^{5} + \frac{7242739421511216977844265327004871586891267112287354472550321096378350239205534158150751188774430604}{4992146443407979516042522205776414096681010711542978557213242992582800047616203910653739337908238621} a^{4} + \frac{199208527721431905686356704387856571908834940694167050913052933272482489964339723483633072948835073720}{44929317990671815644382699851987726870129096403886807014919186933245200428545835195883654041174147589} a^{3} - \frac{1401578611602353449147993344102061992375591842029530753276573764246883149783882848289800611371606249789}{359434543925374525155061598815901814961032771231094456119353495465961603428366681567069232329393180712} a^{2} - \frac{943448591222269959122626181553882245934462403851911707559597281876241510608601632656203606950589201021}{359434543925374525155061598815901814961032771231094456119353495465961603428366681567069232329393180712} a - \frac{1732562116071505935307356588269261399734053941662724734803006304043172305456367482615160421110016869}{654707730283013707021970125347726438908985011349898827175507277715777055425075922708687126283047688} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{40\!\cdots\!51}{35\!\cdots\!12}a^{31}-\frac{90\!\cdots\!15}{16\!\cdots\!04}a^{30}-\frac{46\!\cdots\!33}{80\!\cdots\!02}a^{29}+\frac{11\!\cdots\!29}{32\!\cdots\!08}a^{28}+\frac{42\!\cdots\!51}{32\!\cdots\!08}a^{27}-\frac{29\!\cdots\!97}{40\!\cdots\!01}a^{26}-\frac{20\!\cdots\!21}{10\!\cdots\!36}a^{25}+\frac{24\!\cdots\!55}{32\!\cdots\!08}a^{24}+\frac{20\!\cdots\!91}{10\!\cdots\!36}a^{23}-\frac{53\!\cdots\!35}{11\!\cdots\!04}a^{22}-\frac{80\!\cdots\!89}{53\!\cdots\!68}a^{21}+\frac{71\!\cdots\!07}{32\!\cdots\!08}a^{20}+\frac{15\!\cdots\!59}{16\!\cdots\!04}a^{19}-\frac{67\!\cdots\!25}{80\!\cdots\!02}a^{18}-\frac{36\!\cdots\!01}{80\!\cdots\!02}a^{17}-\frac{11\!\cdots\!83}{80\!\cdots\!02}a^{16}+\frac{82\!\cdots\!13}{53\!\cdots\!68}a^{15}+\frac{87\!\cdots\!07}{59\!\cdots\!52}a^{14}-\frac{32\!\cdots\!57}{10\!\cdots\!36}a^{13}-\frac{59\!\cdots\!49}{80\!\cdots\!02}a^{12}+\frac{30\!\cdots\!53}{17\!\cdots\!56}a^{11}+\frac{75\!\cdots\!53}{32\!\cdots\!08}a^{10}+\frac{30\!\cdots\!67}{32\!\cdots\!08}a^{9}-\frac{34\!\cdots\!09}{80\!\cdots\!02}a^{8}-\frac{41\!\cdots\!51}{16\!\cdots\!04}a^{7}+\frac{13\!\cdots\!27}{32\!\cdots\!08}a^{6}+\frac{60\!\cdots\!19}{17\!\cdots\!56}a^{5}-\frac{47\!\cdots\!39}{53\!\cdots\!68}a^{4}+\frac{42\!\cdots\!31}{35\!\cdots\!12}a^{3}-\frac{71\!\cdots\!54}{44\!\cdots\!89}a^{2}-\frac{35\!\cdots\!15}{19\!\cdots\!84}a-\frac{22\!\cdots\!23}{65\!\cdots\!88}$, $\frac{19\!\cdots\!03}{42\!\cdots\!04}a^{31}+\frac{33\!\cdots\!61}{16\!\cdots\!92}a^{30}-\frac{26\!\cdots\!59}{10\!\cdots\!26}a^{29}-\frac{29\!\cdots\!81}{42\!\cdots\!04}a^{28}+\frac{25\!\cdots\!19}{42\!\cdots\!04}a^{27}+\frac{13\!\cdots\!37}{87\!\cdots\!64}a^{26}-\frac{38\!\cdots\!79}{42\!\cdots\!04}a^{25}-\frac{41\!\cdots\!77}{14\!\cdots\!68}a^{24}+\frac{13\!\cdots\!95}{14\!\cdots\!68}a^{23}+\frac{57\!\cdots\!59}{14\!\cdots\!68}a^{22}-\frac{80\!\cdots\!51}{10\!\cdots\!26}a^{21}-\frac{15\!\cdots\!17}{42\!\cdots\!04}a^{20}+\frac{10\!\cdots\!97}{21\!\cdots\!52}a^{19}+\frac{56\!\cdots\!41}{21\!\cdots\!52}a^{18}-\frac{51\!\cdots\!49}{21\!\cdots\!52}a^{17}-\frac{66\!\cdots\!47}{35\!\cdots\!42}a^{16}+\frac{57\!\cdots\!09}{70\!\cdots\!84}a^{15}+\frac{18\!\cdots\!87}{17\!\cdots\!21}a^{14}-\frac{58\!\cdots\!11}{42\!\cdots\!04}a^{13}-\frac{30\!\cdots\!01}{70\!\cdots\!84}a^{12}-\frac{93\!\cdots\!35}{10\!\cdots\!26}a^{11}+\frac{53\!\cdots\!73}{42\!\cdots\!04}a^{10}+\frac{44\!\cdots\!45}{42\!\cdots\!04}a^{9}-\frac{23\!\cdots\!27}{10\!\cdots\!26}a^{8}-\frac{43\!\cdots\!17}{21\!\cdots\!52}a^{7}+\frac{33\!\cdots\!35}{15\!\cdots\!52}a^{6}+\frac{19\!\cdots\!51}{11\!\cdots\!14}a^{5}+\frac{25\!\cdots\!05}{78\!\cdots\!76}a^{4}+\frac{12\!\cdots\!47}{28\!\cdots\!48}a^{3}-\frac{40\!\cdots\!26}{19\!\cdots\!69}a^{2}-\frac{31\!\cdots\!45}{39\!\cdots\!38}a-\frac{59\!\cdots\!01}{28\!\cdots\!48}$, $\frac{53\!\cdots\!15}{21\!\cdots\!52}a^{31}-\frac{93\!\cdots\!09}{42\!\cdots\!04}a^{30}-\frac{54\!\cdots\!21}{42\!\cdots\!04}a^{29}+\frac{53\!\cdots\!27}{42\!\cdots\!04}a^{28}+\frac{63\!\cdots\!39}{21\!\cdots\!52}a^{27}-\frac{44\!\cdots\!17}{15\!\cdots\!52}a^{26}-\frac{18\!\cdots\!01}{42\!\cdots\!04}a^{25}+\frac{12\!\cdots\!63}{35\!\cdots\!42}a^{24}+\frac{61\!\cdots\!03}{14\!\cdots\!68}a^{23}-\frac{49\!\cdots\!03}{17\!\cdots\!21}a^{22}-\frac{14\!\cdots\!13}{42\!\cdots\!04}a^{21}+\frac{80\!\cdots\!09}{42\!\cdots\!04}a^{20}+\frac{45\!\cdots\!05}{21\!\cdots\!52}a^{19}-\frac{19\!\cdots\!71}{21\!\cdots\!52}a^{18}-\frac{21\!\cdots\!57}{21\!\cdots\!52}a^{17}+\frac{79\!\cdots\!65}{70\!\cdots\!84}a^{16}+\frac{12\!\cdots\!61}{35\!\cdots\!42}a^{15}+\frac{12\!\cdots\!77}{70\!\cdots\!84}a^{14}-\frac{15\!\cdots\!11}{21\!\cdots\!52}a^{13}-\frac{19\!\cdots\!21}{14\!\cdots\!68}a^{12}+\frac{31\!\cdots\!85}{42\!\cdots\!04}a^{11}+\frac{20\!\cdots\!25}{42\!\cdots\!04}a^{10}+\frac{63\!\cdots\!99}{21\!\cdots\!52}a^{9}-\frac{39\!\cdots\!03}{42\!\cdots\!04}a^{8}-\frac{28\!\cdots\!05}{42\!\cdots\!04}a^{7}+\frac{12\!\cdots\!69}{15\!\cdots\!52}a^{6}+\frac{82\!\cdots\!99}{23\!\cdots\!28}a^{5}+\frac{12\!\cdots\!73}{78\!\cdots\!76}a^{4}+\frac{10\!\cdots\!19}{43\!\cdots\!82}a^{3}-\frac{27\!\cdots\!05}{15\!\cdots\!52}a^{2}-\frac{81\!\cdots\!67}{15\!\cdots\!52}a-\frac{48\!\cdots\!51}{28\!\cdots\!48}$, $\frac{46\!\cdots\!26}{84\!\cdots\!17}a^{31}-\frac{18\!\cdots\!69}{84\!\cdots\!17}a^{30}-\frac{43\!\cdots\!27}{16\!\cdots\!34}a^{29}+\frac{19\!\cdots\!79}{16\!\cdots\!34}a^{28}+\frac{44\!\cdots\!27}{84\!\cdots\!17}a^{27}-\frac{14\!\cdots\!97}{56\!\cdots\!78}a^{26}-\frac{54\!\cdots\!30}{84\!\cdots\!17}a^{25}+\frac{33\!\cdots\!70}{94\!\cdots\!13}a^{24}+\frac{16\!\cdots\!25}{28\!\cdots\!39}a^{23}-\frac{19\!\cdots\!51}{56\!\cdots\!78}a^{22}-\frac{37\!\cdots\!55}{84\!\cdots\!17}a^{21}+\frac{44\!\cdots\!85}{16\!\cdots\!34}a^{20}+\frac{42\!\cdots\!69}{16\!\cdots\!34}a^{19}-\frac{26\!\cdots\!87}{16\!\cdots\!34}a^{18}-\frac{95\!\cdots\!21}{84\!\cdots\!17}a^{17}+\frac{19\!\cdots\!10}{28\!\cdots\!39}a^{16}+\frac{26\!\cdots\!87}{56\!\cdots\!78}a^{15}-\frac{57\!\cdots\!38}{28\!\cdots\!39}a^{14}-\frac{18\!\cdots\!35}{84\!\cdots\!17}a^{13}+\frac{83\!\cdots\!32}{28\!\cdots\!39}a^{12}+\frac{82\!\cdots\!86}{84\!\cdots\!17}a^{11}+\frac{66\!\cdots\!49}{84\!\cdots\!17}a^{10}-\frac{55\!\cdots\!67}{16\!\cdots\!34}a^{9}-\frac{16\!\cdots\!59}{16\!\cdots\!34}a^{8}+\frac{11\!\cdots\!77}{16\!\cdots\!34}a^{7}+\frac{28\!\cdots\!84}{28\!\cdots\!39}a^{6}-\frac{72\!\cdots\!22}{94\!\cdots\!13}a^{5}-\frac{21\!\cdots\!77}{18\!\cdots\!26}a^{4}+\frac{26\!\cdots\!45}{62\!\cdots\!42}a^{3}+\frac{74\!\cdots\!26}{10\!\cdots\!57}a^{2}-\frac{57\!\cdots\!61}{62\!\cdots\!42}a-\frac{59\!\cdots\!23}{57\!\cdots\!79}$, $\frac{13\!\cdots\!85}{21\!\cdots\!52}a^{31}-\frac{73\!\cdots\!03}{69\!\cdots\!64}a^{30}-\frac{13\!\cdots\!63}{42\!\cdots\!04}a^{29}+\frac{23\!\cdots\!91}{42\!\cdots\!04}a^{28}+\frac{15\!\cdots\!99}{21\!\cdots\!52}a^{27}-\frac{17\!\cdots\!17}{14\!\cdots\!68}a^{26}-\frac{42\!\cdots\!97}{42\!\cdots\!04}a^{25}+\frac{11\!\cdots\!73}{70\!\cdots\!84}a^{24}+\frac{14\!\cdots\!23}{14\!\cdots\!68}a^{23}-\frac{50\!\cdots\!89}{35\!\cdots\!42}a^{22}-\frac{32\!\cdots\!21}{42\!\cdots\!04}a^{21}+\frac{43\!\cdots\!01}{42\!\cdots\!04}a^{20}+\frac{25\!\cdots\!94}{53\!\cdots\!63}a^{19}-\frac{12\!\cdots\!77}{21\!\cdots\!52}a^{18}-\frac{48\!\cdots\!31}{21\!\cdots\!52}a^{17}+\frac{72\!\cdots\!25}{39\!\cdots\!38}a^{16}+\frac{56\!\cdots\!35}{70\!\cdots\!84}a^{15}-\frac{13\!\cdots\!03}{17\!\cdots\!21}a^{14}-\frac{41\!\cdots\!55}{21\!\cdots\!52}a^{13}-\frac{10\!\cdots\!33}{47\!\cdots\!56}a^{12}+\frac{16\!\cdots\!29}{42\!\cdots\!04}a^{11}+\frac{43\!\cdots\!07}{42\!\cdots\!04}a^{10}-\frac{35\!\cdots\!65}{53\!\cdots\!63}a^{9}-\frac{88\!\cdots\!31}{42\!\cdots\!04}a^{8}+\frac{49\!\cdots\!37}{42\!\cdots\!04}a^{7}+\frac{24\!\cdots\!27}{14\!\cdots\!68}a^{6}-\frac{69\!\cdots\!51}{78\!\cdots\!76}a^{5}+\frac{19\!\cdots\!79}{23\!\cdots\!28}a^{4}+\frac{56\!\cdots\!05}{78\!\cdots\!76}a^{3}-\frac{43\!\cdots\!77}{52\!\cdots\!84}a^{2}+\frac{83\!\cdots\!55}{15\!\cdots\!52}a-\frac{91\!\cdots\!21}{85\!\cdots\!44}$, $\frac{49\!\cdots\!05}{21\!\cdots\!52}a^{31}-\frac{10\!\cdots\!89}{42\!\cdots\!04}a^{30}-\frac{49\!\cdots\!53}{42\!\cdots\!04}a^{29}+\frac{58\!\cdots\!37}{42\!\cdots\!04}a^{28}+\frac{56\!\cdots\!21}{21\!\cdots\!52}a^{27}-\frac{42\!\cdots\!55}{14\!\cdots\!68}a^{26}-\frac{15\!\cdots\!01}{42\!\cdots\!04}a^{25}+\frac{25\!\cdots\!25}{70\!\cdots\!84}a^{24}+\frac{52\!\cdots\!95}{14\!\cdots\!68}a^{23}-\frac{21\!\cdots\!77}{70\!\cdots\!84}a^{22}-\frac{12\!\cdots\!11}{42\!\cdots\!04}a^{21}+\frac{14\!\cdots\!13}{69\!\cdots\!64}a^{20}+\frac{37\!\cdots\!45}{21\!\cdots\!52}a^{19}-\frac{10\!\cdots\!17}{10\!\cdots\!26}a^{18}-\frac{44\!\cdots\!11}{53\!\cdots\!63}a^{17}+\frac{42\!\cdots\!43}{23\!\cdots\!28}a^{16}+\frac{49\!\cdots\!27}{17\!\cdots\!21}a^{15}+\frac{47\!\cdots\!07}{35\!\cdots\!42}a^{14}-\frac{12\!\cdots\!13}{21\!\cdots\!52}a^{13}-\frac{51\!\cdots\!69}{47\!\cdots\!56}a^{12}+\frac{30\!\cdots\!75}{42\!\cdots\!04}a^{11}+\frac{16\!\cdots\!41}{42\!\cdots\!04}a^{10}-\frac{17\!\cdots\!67}{10\!\cdots\!26}a^{9}-\frac{29\!\cdots\!11}{42\!\cdots\!04}a^{8}-\frac{89\!\cdots\!17}{42\!\cdots\!04}a^{7}+\frac{76\!\cdots\!59}{14\!\cdots\!68}a^{6}+\frac{17\!\cdots\!43}{11\!\cdots\!14}a^{5}+\frac{28\!\cdots\!49}{23\!\cdots\!28}a^{4}+\frac{14\!\cdots\!45}{87\!\cdots\!64}a^{3}-\frac{25\!\cdots\!77}{15\!\cdots\!52}a^{2}-\frac{10\!\cdots\!45}{15\!\cdots\!52}a-\frac{40\!\cdots\!15}{28\!\cdots\!48}$, $\frac{72\!\cdots\!63}{21\!\cdots\!52}a^{31}-\frac{11\!\cdots\!39}{42\!\cdots\!04}a^{30}-\frac{74\!\cdots\!61}{42\!\cdots\!04}a^{29}+\frac{65\!\cdots\!19}{42\!\cdots\!04}a^{28}+\frac{43\!\cdots\!61}{10\!\cdots\!26}a^{27}-\frac{54\!\cdots\!89}{15\!\cdots\!52}a^{26}-\frac{25\!\cdots\!63}{42\!\cdots\!04}a^{25}+\frac{73\!\cdots\!82}{17\!\cdots\!21}a^{24}+\frac{86\!\cdots\!01}{14\!\cdots\!68}a^{23}-\frac{58\!\cdots\!24}{17\!\cdots\!21}a^{22}-\frac{20\!\cdots\!63}{42\!\cdots\!04}a^{21}+\frac{94\!\cdots\!13}{42\!\cdots\!04}a^{20}+\frac{66\!\cdots\!07}{21\!\cdots\!52}a^{19}-\frac{21\!\cdots\!25}{21\!\cdots\!52}a^{18}-\frac{16\!\cdots\!43}{10\!\cdots\!26}a^{17}+\frac{31\!\cdots\!77}{70\!\cdots\!84}a^{16}+\frac{96\!\cdots\!46}{17\!\cdots\!21}a^{15}+\frac{20\!\cdots\!61}{70\!\cdots\!84}a^{14}-\frac{13\!\cdots\!47}{10\!\cdots\!26}a^{13}-\frac{29\!\cdots\!69}{14\!\cdots\!68}a^{12}+\frac{61\!\cdots\!91}{42\!\cdots\!04}a^{11}+\frac{32\!\cdots\!09}{42\!\cdots\!04}a^{10}+\frac{11\!\cdots\!07}{21\!\cdots\!52}a^{9}-\frac{68\!\cdots\!31}{42\!\cdots\!04}a^{8}-\frac{13\!\cdots\!65}{42\!\cdots\!04}a^{7}+\frac{31\!\cdots\!57}{17\!\cdots\!28}a^{6}+\frac{47\!\cdots\!33}{11\!\cdots\!14}a^{5}-\frac{46\!\cdots\!11}{78\!\cdots\!76}a^{4}+\frac{59\!\cdots\!07}{13\!\cdots\!46}a^{3}-\frac{22\!\cdots\!17}{15\!\cdots\!52}a^{2}-\frac{99\!\cdots\!39}{15\!\cdots\!52}a-\frac{18\!\cdots\!97}{28\!\cdots\!48}$, $\frac{70\!\cdots\!25}{14\!\cdots\!68}a^{31}-\frac{17\!\cdots\!95}{35\!\cdots\!42}a^{30}-\frac{58\!\cdots\!09}{23\!\cdots\!28}a^{29}+\frac{12\!\cdots\!53}{47\!\cdots\!56}a^{28}+\frac{26\!\cdots\!05}{47\!\cdots\!56}a^{27}-\frac{10\!\cdots\!01}{17\!\cdots\!21}a^{26}-\frac{11\!\cdots\!89}{14\!\cdots\!68}a^{25}+\frac{10\!\cdots\!47}{14\!\cdots\!68}a^{24}+\frac{12\!\cdots\!53}{15\!\cdots\!52}a^{23}-\frac{27\!\cdots\!69}{47\!\cdots\!56}a^{22}-\frac{43\!\cdots\!23}{70\!\cdots\!84}a^{21}+\frac{18\!\cdots\!19}{47\!\cdots\!56}a^{20}+\frac{13\!\cdots\!25}{35\!\cdots\!42}a^{19}-\frac{33\!\cdots\!62}{17\!\cdots\!21}a^{18}-\frac{42\!\cdots\!97}{23\!\cdots\!28}a^{17}+\frac{17\!\cdots\!55}{70\!\cdots\!84}a^{16}+\frac{14\!\cdots\!75}{23\!\cdots\!28}a^{15}+\frac{19\!\cdots\!73}{58\!\cdots\!07}a^{14}-\frac{17\!\cdots\!65}{14\!\cdots\!68}a^{13}-\frac{16\!\cdots\!57}{70\!\cdots\!84}a^{12}+\frac{48\!\cdots\!63}{35\!\cdots\!42}a^{11}+\frac{39\!\cdots\!31}{47\!\cdots\!56}a^{10}+\frac{13\!\cdots\!37}{15\!\cdots\!52}a^{9}-\frac{18\!\cdots\!37}{11\!\cdots\!14}a^{8}-\frac{88\!\cdots\!57}{70\!\cdots\!84}a^{7}+\frac{17\!\cdots\!87}{14\!\cdots\!68}a^{6}+\frac{29\!\cdots\!63}{78\!\cdots\!76}a^{5}+\frac{17\!\cdots\!91}{23\!\cdots\!28}a^{4}+\frac{18\!\cdots\!91}{15\!\cdots\!52}a^{3}-\frac{35\!\cdots\!55}{78\!\cdots\!76}a^{2}-\frac{59\!\cdots\!27}{43\!\cdots\!82}a-\frac{74\!\cdots\!25}{28\!\cdots\!48}$, $\frac{13\!\cdots\!20}{53\!\cdots\!63}a^{31}-\frac{12\!\cdots\!01}{42\!\cdots\!04}a^{30}-\frac{55\!\cdots\!17}{42\!\cdots\!04}a^{29}+\frac{67\!\cdots\!71}{42\!\cdots\!04}a^{28}+\frac{31\!\cdots\!95}{10\!\cdots\!26}a^{27}-\frac{49\!\cdots\!85}{14\!\cdots\!68}a^{26}-\frac{17\!\cdots\!95}{42\!\cdots\!04}a^{25}+\frac{15\!\cdots\!95}{35\!\cdots\!42}a^{24}+\frac{58\!\cdots\!17}{14\!\cdots\!68}a^{23}-\frac{63\!\cdots\!21}{17\!\cdots\!21}a^{22}-\frac{13\!\cdots\!11}{42\!\cdots\!04}a^{21}+\frac{10\!\cdots\!97}{42\!\cdots\!04}a^{20}+\frac{42\!\cdots\!67}{21\!\cdots\!52}a^{19}-\frac{26\!\cdots\!47}{21\!\cdots\!52}a^{18}-\frac{50\!\cdots\!39}{53\!\cdots\!63}a^{17}+\frac{59\!\cdots\!03}{23\!\cdots\!28}a^{16}+\frac{11\!\cdots\!79}{35\!\cdots\!42}a^{15}+\frac{94\!\cdots\!51}{70\!\cdots\!84}a^{14}-\frac{36\!\cdots\!87}{53\!\cdots\!63}a^{13}-\frac{56\!\cdots\!03}{47\!\cdots\!56}a^{12}+\frac{38\!\cdots\!19}{42\!\cdots\!04}a^{11}+\frac{18\!\cdots\!65}{42\!\cdots\!04}a^{10}-\frac{97\!\cdots\!77}{21\!\cdots\!52}a^{9}-\frac{35\!\cdots\!83}{42\!\cdots\!04}a^{8}+\frac{10\!\cdots\!39}{42\!\cdots\!04}a^{7}+\frac{95\!\cdots\!77}{14\!\cdots\!68}a^{6}+\frac{13\!\cdots\!01}{11\!\cdots\!14}a^{5}+\frac{19\!\cdots\!95}{23\!\cdots\!28}a^{4}+\frac{39\!\cdots\!29}{19\!\cdots\!69}a^{3}-\frac{10\!\cdots\!99}{52\!\cdots\!84}a^{2}-\frac{12\!\cdots\!41}{15\!\cdots\!52}a-\frac{12\!\cdots\!45}{85\!\cdots\!44}$, $\frac{31\!\cdots\!96}{53\!\cdots\!63}a^{31}-\frac{62\!\cdots\!33}{42\!\cdots\!04}a^{30}-\frac{12\!\cdots\!51}{42\!\cdots\!04}a^{29}+\frac{51\!\cdots\!21}{42\!\cdots\!04}a^{28}+\frac{36\!\cdots\!56}{53\!\cdots\!63}a^{27}-\frac{43\!\cdots\!81}{15\!\cdots\!52}a^{26}-\frac{41\!\cdots\!13}{42\!\cdots\!04}a^{25}+\frac{19\!\cdots\!13}{70\!\cdots\!84}a^{24}+\frac{13\!\cdots\!53}{14\!\cdots\!68}a^{23}-\frac{26\!\cdots\!12}{17\!\cdots\!21}a^{22}-\frac{31\!\cdots\!79}{42\!\cdots\!04}a^{21}+\frac{33\!\cdots\!93}{42\!\cdots\!04}a^{20}+\frac{47\!\cdots\!23}{10\!\cdots\!26}a^{19}-\frac{26\!\cdots\!73}{10\!\cdots\!26}a^{18}-\frac{43\!\cdots\!97}{21\!\cdots\!52}a^{17}-\frac{22\!\cdots\!91}{35\!\cdots\!42}a^{16}+\frac{10\!\cdots\!38}{17\!\cdots\!21}a^{15}+\frac{44\!\cdots\!05}{70\!\cdots\!84}a^{14}-\frac{18\!\cdots\!93}{21\!\cdots\!52}a^{13}-\frac{41\!\cdots\!31}{14\!\cdots\!68}a^{12}-\frac{11\!\cdots\!15}{42\!\cdots\!04}a^{11}+\frac{35\!\cdots\!87}{42\!\cdots\!04}a^{10}+\frac{35\!\cdots\!91}{10\!\cdots\!26}a^{9}-\frac{52\!\cdots\!77}{42\!\cdots\!04}a^{8}-\frac{13\!\cdots\!17}{42\!\cdots\!04}a^{7}+\frac{11\!\cdots\!21}{15\!\cdots\!52}a^{6}+\frac{95\!\cdots\!73}{11\!\cdots\!14}a^{5}+\frac{41\!\cdots\!57}{78\!\cdots\!76}a^{4}+\frac{21\!\cdots\!99}{39\!\cdots\!38}a^{3}-\frac{63\!\cdots\!41}{15\!\cdots\!52}a^{2}-\frac{24\!\cdots\!61}{15\!\cdots\!52}a-\frac{11\!\cdots\!99}{28\!\cdots\!48}$, $\frac{16\!\cdots\!87}{42\!\cdots\!04}a^{31}+\frac{40\!\cdots\!51}{42\!\cdots\!04}a^{30}-\frac{86\!\cdots\!57}{42\!\cdots\!04}a^{29}-\frac{49\!\cdots\!95}{10\!\cdots\!26}a^{28}+\frac{21\!\cdots\!15}{42\!\cdots\!04}a^{27}+\frac{15\!\cdots\!59}{14\!\cdots\!68}a^{26}-\frac{78\!\cdots\!75}{10\!\cdots\!26}a^{25}-\frac{23\!\cdots\!27}{14\!\cdots\!68}a^{24}+\frac{27\!\cdots\!01}{35\!\cdots\!42}a^{23}+\frac{25\!\cdots\!67}{14\!\cdots\!68}a^{22}-\frac{25\!\cdots\!91}{42\!\cdots\!04}a^{21}-\frac{15\!\cdots\!89}{10\!\cdots\!26}a^{20}+\frac{19\!\cdots\!85}{53\!\cdots\!63}a^{19}+\frac{52\!\cdots\!64}{53\!\cdots\!63}a^{18}-\frac{17\!\cdots\!57}{10\!\cdots\!26}a^{17}-\frac{12\!\cdots\!83}{23\!\cdots\!28}a^{16}+\frac{75\!\cdots\!83}{17\!\cdots\!21}a^{15}+\frac{76\!\cdots\!21}{35\!\cdots\!42}a^{14}+\frac{15\!\cdots\!83}{42\!\cdots\!04}a^{13}-\frac{10\!\cdots\!39}{17\!\cdots\!28}a^{12}-\frac{30\!\cdots\!23}{42\!\cdots\!04}a^{11}+\frac{11\!\cdots\!01}{10\!\cdots\!26}a^{10}+\frac{12\!\cdots\!71}{42\!\cdots\!04}a^{9}-\frac{29\!\cdots\!23}{42\!\cdots\!04}a^{8}-\frac{24\!\cdots\!13}{42\!\cdots\!04}a^{7}-\frac{36\!\cdots\!79}{35\!\cdots\!42}a^{6}+\frac{23\!\cdots\!27}{39\!\cdots\!38}a^{5}+\frac{87\!\cdots\!93}{23\!\cdots\!28}a^{4}-\frac{16\!\cdots\!11}{17\!\cdots\!28}a^{3}-\frac{30\!\cdots\!19}{17\!\cdots\!28}a^{2}-\frac{18\!\cdots\!39}{15\!\cdots\!52}a+\frac{25\!\cdots\!85}{42\!\cdots\!72}$, $\frac{93\!\cdots\!89}{10\!\cdots\!26}a^{31}-\frac{16\!\cdots\!97}{21\!\cdots\!52}a^{30}-\frac{94\!\cdots\!35}{21\!\cdots\!52}a^{29}+\frac{95\!\cdots\!75}{21\!\cdots\!52}a^{28}+\frac{21\!\cdots\!07}{21\!\cdots\!52}a^{27}-\frac{70\!\cdots\!29}{70\!\cdots\!84}a^{26}-\frac{75\!\cdots\!69}{53\!\cdots\!63}a^{25}+\frac{42\!\cdots\!77}{35\!\cdots\!42}a^{24}+\frac{25\!\cdots\!23}{17\!\cdots\!21}a^{23}-\frac{68\!\cdots\!17}{70\!\cdots\!84}a^{22}-\frac{23\!\cdots\!31}{21\!\cdots\!52}a^{21}+\frac{14\!\cdots\!61}{21\!\cdots\!52}a^{20}+\frac{36\!\cdots\!93}{53\!\cdots\!63}a^{19}-\frac{66\!\cdots\!79}{21\!\cdots\!52}a^{18}-\frac{17\!\cdots\!62}{53\!\cdots\!63}a^{17}+\frac{76\!\cdots\!73}{21\!\cdots\!41}a^{16}+\frac{39\!\cdots\!21}{35\!\cdots\!42}a^{15}+\frac{11\!\cdots\!22}{17\!\cdots\!21}a^{14}-\frac{49\!\cdots\!49}{21\!\cdots\!52}a^{13}-\frac{26\!\cdots\!69}{58\!\cdots\!07}a^{12}+\frac{53\!\cdots\!65}{21\!\cdots\!52}a^{11}+\frac{84\!\cdots\!25}{53\!\cdots\!63}a^{10}+\frac{14\!\cdots\!67}{21\!\cdots\!52}a^{9}-\frac{61\!\cdots\!11}{21\!\cdots\!52}a^{8}-\frac{83\!\cdots\!17}{21\!\cdots\!52}a^{7}+\frac{87\!\cdots\!57}{35\!\cdots\!42}a^{6}+\frac{15\!\cdots\!86}{19\!\cdots\!69}a^{5}+\frac{31\!\cdots\!45}{23\!\cdots\!28}a^{4}+\frac{53\!\cdots\!55}{78\!\cdots\!76}a^{3}-\frac{98\!\cdots\!24}{19\!\cdots\!69}a^{2}-\frac{10\!\cdots\!82}{19\!\cdots\!69}a-\frac{77\!\cdots\!67}{14\!\cdots\!24}$, $\frac{32\!\cdots\!17}{21\!\cdots\!52}a^{31}-\frac{28\!\cdots\!42}{53\!\cdots\!63}a^{30}-\frac{41\!\cdots\!80}{53\!\cdots\!63}a^{29}+\frac{60\!\cdots\!59}{21\!\cdots\!52}a^{28}+\frac{60\!\cdots\!51}{34\!\cdots\!32}a^{27}-\frac{11\!\cdots\!04}{17\!\cdots\!21}a^{26}-\frac{12\!\cdots\!64}{53\!\cdots\!63}a^{25}+\frac{10\!\cdots\!85}{11\!\cdots\!14}a^{24}+\frac{18\!\cdots\!55}{70\!\cdots\!84}a^{23}-\frac{64\!\cdots\!07}{70\!\cdots\!84}a^{22}-\frac{45\!\cdots\!07}{21\!\cdots\!52}a^{21}+\frac{14\!\cdots\!35}{21\!\cdots\!52}a^{20}+\frac{15\!\cdots\!35}{10\!\cdots\!26}a^{19}-\frac{22\!\cdots\!80}{53\!\cdots\!63}a^{18}-\frac{41\!\cdots\!35}{53\!\cdots\!63}a^{17}+\frac{13\!\cdots\!73}{70\!\cdots\!84}a^{16}+\frac{25\!\cdots\!21}{70\!\cdots\!84}a^{15}-\frac{34\!\cdots\!87}{70\!\cdots\!84}a^{14}-\frac{14\!\cdots\!83}{10\!\cdots\!26}a^{13}+\frac{71\!\cdots\!19}{70\!\cdots\!84}a^{12}+\frac{46\!\cdots\!71}{10\!\cdots\!26}a^{11}+\frac{45\!\cdots\!43}{10\!\cdots\!26}a^{10}-\frac{10\!\cdots\!05}{10\!\cdots\!26}a^{9}-\frac{83\!\cdots\!96}{53\!\cdots\!63}a^{8}+\frac{28\!\cdots\!59}{21\!\cdots\!52}a^{7}+\frac{48\!\cdots\!42}{17\!\cdots\!21}a^{6}-\frac{10\!\cdots\!01}{23\!\cdots\!28}a^{5}-\frac{13\!\cdots\!34}{58\!\cdots\!07}a^{4}-\frac{63\!\cdots\!35}{78\!\cdots\!76}a^{3}+\frac{10\!\cdots\!91}{26\!\cdots\!92}a^{2}+\frac{12\!\cdots\!36}{19\!\cdots\!69}a+\frac{69\!\cdots\!91}{35\!\cdots\!81}$, $\frac{10\!\cdots\!65}{23\!\cdots\!28}a^{31}-\frac{19\!\cdots\!11}{14\!\cdots\!68}a^{30}-\frac{28\!\cdots\!67}{14\!\cdots\!68}a^{29}+\frac{96\!\cdots\!91}{14\!\cdots\!68}a^{28}+\frac{13\!\cdots\!97}{35\!\cdots\!42}a^{27}-\frac{20\!\cdots\!99}{14\!\cdots\!68}a^{26}-\frac{72\!\cdots\!75}{15\!\cdots\!52}a^{25}+\frac{12\!\cdots\!37}{70\!\cdots\!84}a^{24}+\frac{63\!\cdots\!35}{15\!\cdots\!52}a^{23}-\frac{38\!\cdots\!27}{23\!\cdots\!28}a^{22}-\frac{43\!\cdots\!87}{15\!\cdots\!52}a^{21}+\frac{16\!\cdots\!13}{14\!\cdots\!68}a^{20}+\frac{51\!\cdots\!53}{35\!\cdots\!42}a^{19}-\frac{22\!\cdots\!01}{35\!\cdots\!42}a^{18}-\frac{19\!\cdots\!63}{35\!\cdots\!42}a^{17}+\frac{40\!\cdots\!40}{17\!\cdots\!21}a^{16}+\frac{14\!\cdots\!69}{78\!\cdots\!76}a^{15}-\frac{22\!\cdots\!17}{58\!\cdots\!07}a^{14}-\frac{82\!\cdots\!51}{11\!\cdots\!14}a^{13}-\frac{40\!\cdots\!19}{14\!\cdots\!68}a^{12}+\frac{49\!\cdots\!11}{15\!\cdots\!52}a^{11}+\frac{30\!\cdots\!69}{14\!\cdots\!68}a^{10}-\frac{15\!\cdots\!47}{17\!\cdots\!21}a^{9}-\frac{75\!\cdots\!75}{14\!\cdots\!68}a^{8}+\frac{15\!\cdots\!93}{14\!\cdots\!68}a^{7}-\frac{99\!\cdots\!65}{14\!\cdots\!68}a^{6}+\frac{79\!\cdots\!05}{13\!\cdots\!46}a^{5}-\frac{52\!\cdots\!45}{11\!\cdots\!14}a^{4}-\frac{48\!\cdots\!09}{78\!\cdots\!76}a^{3}+\frac{19\!\cdots\!93}{15\!\cdots\!52}a^{2}-\frac{52\!\cdots\!91}{17\!\cdots\!28}a+\frac{17\!\cdots\!29}{85\!\cdots\!44}$, $\frac{56\!\cdots\!15}{14\!\cdots\!68}a^{31}-\frac{84\!\cdots\!19}{14\!\cdots\!68}a^{30}-\frac{39\!\cdots\!47}{14\!\cdots\!68}a^{29}+\frac{92\!\cdots\!23}{35\!\cdots\!42}a^{28}+\frac{11\!\cdots\!57}{14\!\cdots\!68}a^{27}-\frac{79\!\cdots\!89}{15\!\cdots\!52}a^{26}-\frac{11\!\cdots\!93}{70\!\cdots\!84}a^{25}+\frac{88\!\cdots\!53}{15\!\cdots\!52}a^{24}+\frac{81\!\cdots\!31}{39\!\cdots\!38}a^{23}-\frac{19\!\cdots\!79}{47\!\cdots\!56}a^{22}-\frac{26\!\cdots\!49}{14\!\cdots\!68}a^{21}+\frac{14\!\cdots\!25}{70\!\cdots\!84}a^{20}+\frac{45\!\cdots\!33}{35\!\cdots\!42}a^{19}-\frac{12\!\cdots\!76}{17\!\cdots\!21}a^{18}-\frac{50\!\cdots\!35}{70\!\cdots\!84}a^{17}-\frac{57\!\cdots\!85}{39\!\cdots\!38}a^{16}+\frac{71\!\cdots\!35}{23\!\cdots\!28}a^{15}+\frac{15\!\cdots\!71}{39\!\cdots\!38}a^{14}-\frac{78\!\cdots\!69}{14\!\cdots\!68}a^{13}-\frac{33\!\cdots\!11}{15\!\cdots\!52}a^{12}-\frac{17\!\cdots\!91}{14\!\cdots\!68}a^{11}+\frac{29\!\cdots\!75}{70\!\cdots\!84}a^{10}+\frac{96\!\cdots\!65}{14\!\cdots\!68}a^{9}-\frac{36\!\cdots\!99}{14\!\cdots\!68}a^{8}-\frac{21\!\cdots\!49}{14\!\cdots\!68}a^{7}-\frac{96\!\cdots\!22}{58\!\cdots\!07}a^{6}-\frac{50\!\cdots\!93}{21\!\cdots\!41}a^{5}+\frac{13\!\cdots\!47}{58\!\cdots\!07}a^{4}+\frac{26\!\cdots\!47}{15\!\cdots\!52}a^{3}-\frac{52\!\cdots\!29}{15\!\cdots\!52}a^{2}-\frac{21\!\cdots\!01}{52\!\cdots\!84}a-\frac{13\!\cdots\!39}{21\!\cdots\!86}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 252395239518990.62 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 252395239518990.62 \cdot 5120}{10\cdot\sqrt{5981643090147991811559885370844487936000000000000000000000000}}\cr\approx \mathstrut & 0.311758832163888 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 49*x^30 + 106*x^29 + 1076*x^28 - 2358*x^27 - 14536*x^26 + 30390*x^25 + 143331*x^24 - 277890*x^23 - 1101976*x^22 + 2047834*x^21 + 6700777*x^20 - 11544686*x^19 - 31683220*x^18 + 41887806*x^17 + 112998102*x^16 - 58409400*x^15 - 309446035*x^14 - 223742052*x^13 + 756846581*x^12 + 1385729356*x^11 - 1693247590*x^10 - 2987674244*x^9 + 2900961157*x^8 + 2487107298*x^7 - 1842800025*x^6 - 102727494*x^5 + 449157015*x^4 - 1413093708*x^3 + 372745611*x^2 - 302934816*x + 531854181);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$

Intermediate fields

\(\Q(\sqrt{195}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}, \sqrt{65})\), 4.4.274625.1, 4.4.39546000.2, \(\Q(\sqrt{5}, \sqrt{39})\), \(\Q(\sqrt{13}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{13})\), \(\Q(\sqrt{15}, \sqrt{39})\), 4.4.274625.2, 4.4.39546000.1, \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{13})\), 4.0.18000.1, 4.0.21125.1, 4.0.3042000.1, \(\Q(\zeta_{5})\), 4.0.7909200.1, 4.0.2197.1, 4.0.316368.2, 4.0.54925.1, 8.8.1563886116000000.5, 8.8.370150560000.1, 8.8.1563886116000000.2, 8.8.75418890625.1, 8.8.1563886116000000.3, 8.8.1563886116000000.7, 8.8.1563886116000000.1, 8.0.9253764000000.6, 8.0.9253764000000.10, 8.0.62555444640000.66, 8.0.62555444640000.61, 8.0.9253764000000.3, 8.0.446265625.1, 8.0.62555444640000.63, 8.0.3016755625.1, 8.0.324000000.3, 8.0.9253764000000.4, 8.0.62555444640000.41, 8.0.100088711424.3, 16.16.2445739783817565456000000000000.2, 16.0.85632148167696000000000000.6, 16.0.3913183654108104729600000000.2, 16.0.2445739783817565456000000000000.13, 16.0.5688009063105712890625.1, 16.0.2445739783817565456000000000000.6, 16.0.2445739783817565456000000000000.14

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{8}$ R ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.2.0.1}{2} }^{16}$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(13\) Copy content Toggle raw display 13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$