Normalized defining polynomial
\( x^{32} + 22 x^{30} + 287 x^{28} + 1532 x^{26} + 2375 x^{24} + 5030 x^{22} + 60471 x^{20} - 319026 x^{18} - 1017614 x^{16} + 6913746 x^{14} + 13189776 x^{12} - 111387544 x^{10} - 54425047 x^{8} + 377006912 x^{6} + 1068434336 x^{4} - 91362752 x^{2} + 251412736 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(259,·)$, $\chi_{780}(391,·)$, $\chi_{780}(649,·)$, $\chi_{780}(151,·)$, $\chi_{780}(541,·)$, $\chi_{780}(31,·)$, $\chi_{780}(421,·)$, $\chi_{780}(47,·)$, $\chi_{780}(181,·)$, $\chi_{780}(287,·)$, $\chi_{780}(317,·)$, $\chi_{780}(53,·)$, $\chi_{780}(83,·)$, $\chi_{780}(707,·)$, $\chi_{780}(437,·)$, $\chi_{780}(203,·)$, $\chi_{780}(77,·)$, $\chi_{780}(79,·)$, $\chi_{780}(593,·)$, $\chi_{780}(467,·)$, $\chi_{780}(469,·)$, $\chi_{780}(473,·)$, $\chi_{780}(677,·)$, $\chi_{780}(571,·)$, $\chi_{780}(229,·)$, $\chi_{780}(233,·)$, $\chi_{780}(619,·)$, $\chi_{780}(109,·)$, $\chi_{780}(623,·)$, $\chi_{780}(499,·)$, $\chi_{780}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{2} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} - \frac{5}{12} a^{10} - \frac{1}{12} a^{8} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{5}{12} a^{11} - \frac{1}{12} a^{9} + \frac{1}{6} a^{7} + \frac{1}{3} a^{5} + \frac{5}{12} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{12} a^{8} + \frac{1}{6} a^{6} - \frac{1}{4} a^{4} + \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{17} - \frac{5}{12} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{18} - \frac{5}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{19} - \frac{5}{12} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{348} a^{20} + \frac{1}{58} a^{18} - \frac{7}{348} a^{16} + \frac{5}{348} a^{14} + \frac{10}{87} a^{12} - \frac{17}{348} a^{10} + \frac{7}{116} a^{8} - \frac{13}{348} a^{6} + \frac{47}{116} a^{4} - \frac{21}{58} a^{2} + \frac{3}{29}$, $\frac{1}{348} a^{21} + \frac{1}{58} a^{19} - \frac{7}{348} a^{17} + \frac{5}{348} a^{15} - \frac{3}{58} a^{13} - \frac{25}{116} a^{11} - \frac{51}{116} a^{9} + \frac{15}{116} a^{7} + \frac{47}{116} a^{5} - \frac{5}{174} a^{3} - \frac{11}{174} a$, $\frac{1}{348} a^{22} - \frac{7}{174} a^{18} - \frac{11}{348} a^{16} + \frac{5}{174} a^{14} - \frac{25}{348} a^{12} - \frac{23}{58} a^{10} + \frac{151}{348} a^{8} - \frac{25}{87} a^{6} + \frac{53}{116} a^{4} + \frac{8}{29} a^{2} + \frac{11}{29}$, $\frac{1}{348} a^{23} - \frac{7}{174} a^{19} - \frac{11}{348} a^{17} + \frac{5}{174} a^{15} - \frac{25}{348} a^{13} - \frac{23}{58} a^{11} + \frac{151}{348} a^{9} - \frac{25}{87} a^{7} + \frac{53}{116} a^{5} + \frac{8}{29} a^{3} + \frac{11}{29} a$, $\frac{1}{195228} a^{24} + \frac{155}{195228} a^{22} - \frac{32}{48807} a^{20} - \frac{4373}{195228} a^{18} - \frac{188}{48807} a^{16} - \frac{2989}{195228} a^{14} - \frac{29395}{195228} a^{12} + \frac{54185}{195228} a^{10} - \frac{1058}{48807} a^{8} - \frac{37001}{195228} a^{6} - \frac{733}{4437} a^{4} - \frac{16531}{195228} a^{2} + \frac{380}{1683}$, $\frac{1}{195228} a^{25} + \frac{155}{195228} a^{23} - \frac{32}{48807} a^{21} - \frac{4373}{195228} a^{19} - \frac{188}{48807} a^{17} - \frac{2989}{195228} a^{15} + \frac{3143}{195228} a^{13} + \frac{86723}{195228} a^{11} + \frac{46691}{97614} a^{9} - \frac{69539}{195228} a^{7} - \frac{733}{4437} a^{5} - \frac{81607}{195228} a^{3} + \frac{1321}{3366} a$, $\frac{1}{585684} a^{26} + \frac{1}{585684} a^{24} + \frac{125}{585684} a^{22} - \frac{41}{65076} a^{20} - \frac{65}{11484} a^{18} + \frac{11249}{292842} a^{16} + \frac{91}{6732} a^{14} + \frac{7985}{48807} a^{12} - \frac{168781}{585684} a^{10} + \frac{2443}{16269} a^{8} + \frac{2225}{5916} a^{6} + \frac{274903}{585684} a^{4} + \frac{4838}{146421} a^{2} + \frac{5809}{13311}$, $\frac{1}{1171368} a^{27} - \frac{1}{585684} a^{25} + \frac{79}{68904} a^{23} - \frac{139}{97614} a^{21} + \frac{8317}{390456} a^{19} + \frac{9011}{585684} a^{17} + \frac{937}{43384} a^{15} + \frac{4145}{65076} a^{13} - \frac{96665}{585684} a^{11} - \frac{44375}{195228} a^{9} - \frac{22802}{48807} a^{7} - \frac{41269}{146421} a^{5} + \frac{344957}{1171368} a^{3} - \frac{37595}{146421} a$, $\frac{1}{4144299984} a^{28} - \frac{895}{2072149992} a^{26} + \frac{8627}{4144299984} a^{24} + \frac{93527}{172679166} a^{22} - \frac{659}{2802096} a^{20} - \frac{20434633}{2072149992} a^{18} - \frac{1622495}{1381433328} a^{16} + \frac{85983}{2646424} a^{14} + \frac{179630797}{2072149992} a^{12} + \frac{3284131}{40630392} a^{10} + \frac{88489871}{345358332} a^{8} + \frac{47792671}{259018749} a^{6} + \frac{952875557}{4144299984} a^{4} - \frac{26193383}{94188636} a^{2} - \frac{4023442}{86339583}$, $\frac{1}{8288599968} a^{29} - \frac{895}{4144299984} a^{27} - \frac{12601}{8288599968} a^{25} + \frac{75439}{57559722} a^{23} - \frac{116855}{95271264} a^{21} - \frac{93108691}{4144299984} a^{19} + \frac{102939557}{2762866656} a^{17} + \frac{1480715}{47635632} a^{15} - \frac{240768515}{4144299984} a^{13} - \frac{163719575}{460477776} a^{11} + \frac{14098295}{38373148} a^{9} + \frac{37649426}{259018749} a^{7} - \frac{3328493623}{8288599968} a^{5} + \frac{546886781}{2072149992} a^{3} - \frac{9493289}{57559722} a$, $\frac{1}{271746590242979994965041181722284905601651944065728} a^{30} - \frac{127553058185895739960341843060217360861}{12352117738317272498410962805558404800075088366624} a^{28} + \frac{197710728994972808438064803059940259837212023}{271746590242979994965041181722284905601651944065728} a^{26} + \frac{3690705665214054835764899987560145012871139}{5661387296728749895105024619214268866701082168036} a^{24} - \frac{263704266263606964948090839640482786475449856985}{271746590242979994965041181722284905601651944065728} a^{22} - \frac{69281534154551108775064729310705374483922226067}{135873295121489997482520590861142452800825972032864} a^{20} - \frac{62344474255708131642029020824787835966076327355}{2074401452236488511183520471162480195432457588288} a^{18} - \frac{2429103654648228060580784726184401828212576959343}{135873295121489997482520590861142452800825972032864} a^{16} + \frac{2017288830257790695258839807836575388145967363101}{135873295121489997482520590861142452800825972032864} a^{14} - \frac{21086609396403321294213982637710038934438190833907}{135873295121489997482520590861142452800825972032864} a^{12} + \frac{4133411146076910055391426624542364633558291926147}{33968323780372499370630147715285613200206493008216} a^{10} - \frac{9827664736703461491937750434275902564073577538561}{33968323780372499370630147715285613200206493008216} a^{8} - \frac{65934278805282680514807664956890707183850573729}{3123524025781379252471737720945803512662666023744} a^{6} + \frac{18091144704139038561368750782993618609275644613971}{67936647560744998741260295430571226400412986016432} a^{4} - \frac{69401535157977036043263472891214418457694975165}{292830377417004304919225411338669079312124939726} a^{2} + \frac{2117312898134147335268375961068438463056365182824}{4246040472546562421328768464410701650025811626027}$, $\frac{1}{538601741861586350020711622173568682902474153138272896} a^{31} + \frac{4818077759921165273277415917659792090766091}{269300870930793175010355811086784341451237076569136448} a^{29} + \frac{164360768786247160775183377509981104506237330735}{538601741861586350020711622173568682902474153138272896} a^{27} - \frac{2911909783330751969715233807869241286247006649}{1662351055128352932162690191893730502785414052895904} a^{25} - \frac{519607420436774230131551698640375186066559147226825}{538601741861586350020711622173568682902474153138272896} a^{23} - \frac{918929958394791634075381671323151437166367302359}{24481897357344834091850528280616758313748825142648768} a^{21} - \frac{144409460919933401764862500213483505080869644478547}{4111463678332720229165737573844035747347130939986816} a^{19} + \frac{10488413443795322177091672195877105980701125137052535}{269300870930793175010355811086784341451237076569136448} a^{17} + \frac{2779246481848347794290015105982630697402579113429041}{269300870930793175010355811086784341451237076569136448} a^{15} + \frac{182968462055845996465526090976761003526602471663005}{4414768375914642213284521493225972810676017648674368} a^{13} + \frac{14952429935098050741621886161474284764185128203514729}{33662608866349146876294476385848042681404634571142056} a^{11} + \frac{319019164126418373403088622252151293571999689732421}{3960306925452840808975820751276240315459368773075536} a^{9} + \frac{63826867763213211441235049256066192899443528028185763}{179533913953862116673570540724522894300824717712757632} a^{7} - \frac{554461504396122867946435039113811772524851206163515}{16831304433174573438147238192924021340702317285571028} a^{5} - \frac{12515248523740983875157448420391711094846014647518509}{33662608866349146876294476385848042681404634571142056} a^{3} + \frac{1884048264198092348636750839479836686814185993055203}{4207826108293643359536809548231005335175579321392757} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{520}$, which has order $16640$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{26305016429533230737}{17828340461005400325998976384} a^{31} - \frac{909875820357796104433}{26742510691508100488998464576} a^{29} - \frac{8160504851624452563199}{17828340461005400325998976384} a^{27} - \frac{36182109905774441993861}{13371255345754050244499232288} a^{25} - \frac{313677261134364910294997}{53485021383016200977996929152} a^{23} - \frac{5791530734009940996467}{524362954735452950764675776} a^{21} - \frac{40401021814010596623991}{408282605977222908228984192} a^{19} + \frac{9715258434821079163757611}{26742510691508100488998464576} a^{17} + \frac{17677774381381783163184815}{8914170230502700162999488192} a^{15} - \frac{233367280063697789820530459}{26742510691508100488998464576} a^{13} - \frac{3596493390457787785614133}{115269442635810777969820968} a^{11} + \frac{327561350163393007431702127}{2228542557625675040749872048} a^{9} + \frac{13899739868589003744638095381}{53485021383016200977996929152} a^{7} - \frac{466661775323909912289348935}{835703459109628140281202018} a^{5} - \frac{841121431204231629499067615}{371423759604279173458312008} a^{3} - \frac{733185175781668643598513779}{835703459109628140281202018} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169883820966474.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||