Properties

Label 32.0.598...000.6
Degree $32$
Signature $[0, 16]$
Discriminant $5.982\times 10^{60}$
Root discriminant \(79.30\)
Ramified primes $2,3,5,13$
Class number $10240$ (GRH)
Class group [2, 8, 8, 80] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581)
 
gp: K = bnfinit(y^32 - 4*y^31 - 38*y^30 + 118*y^29 + 790*y^28 - 1842*y^27 - 9626*y^26 + 20072*y^25 + 70123*y^24 - 176218*y^23 - 293732*y^22 + 1284032*y^21 + 219366*y^20 - 6794274*y^19 + 6681279*y^18 + 20297534*y^17 - 49420166*y^16 - 4100710*y^15 + 177618004*y^14 - 219341242*y^13 - 314737755*y^12 + 897468480*y^11 + 58509126*y^10 - 1745550454*y^9 + 821617744*y^8 + 1855727336*y^7 - 1690380687*y^6 - 1037802612*y^5 + 2331262742*y^4 - 1529717908*y^3 + 508183759*y^2 - 86254878*y + 6599581, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581)
 

\( x^{32} - 4 x^{31} - 38 x^{30} + 118 x^{29} + 790 x^{28} - 1842 x^{27} - 9626 x^{26} + 20072 x^{25} + \cdots + 6599581 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5981643090147991811559885370844487936000000000000000000000000\) \(\medspace = 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(79.30\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{3/4}13^{3/4}\approx 79.30044794118675$
Ramified primes:   \(2\), \(3\), \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(780=2^{2}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(389,·)$, $\chi_{780}(521,·)$, $\chi_{780}(343,·)$, $\chi_{780}(109,·)$, $\chi_{780}(281,·)$, $\chi_{780}(541,·)$, $\chi_{780}(287,·)$, $\chi_{780}(161,·)$, $\chi_{780}(547,·)$, $\chi_{780}(421,·)$, $\chi_{780}(47,·)$, $\chi_{780}(307,·)$, $\chi_{780}(181,·)$, $\chi_{780}(649,·)$, $\chi_{780}(443,·)$, $\chi_{780}(701,·)$, $\chi_{780}(703,·)$, $\chi_{780}(707,·)$, $\chi_{780}(203,·)$, $\chi_{780}(463,·)$, $\chi_{780}(209,·)$, $\chi_{780}(83,·)$, $\chi_{780}(469,·)$, $\chi_{780}(727,·)$, $\chi_{780}(187,·)$, $\chi_{780}(229,·)$, $\chi_{780}(103,·)$, $\chi_{780}(749,·)$, $\chi_{780}(623,·)$, $\chi_{780}(467,·)$, $\chi_{780}(629,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3}a^{20}-\frac{1}{3}a^{16}+\frac{1}{3}a^{10}+\frac{1}{3}a^{4}-\frac{1}{3}$, $\frac{1}{3}a^{21}-\frac{1}{3}a^{17}+\frac{1}{3}a^{11}+\frac{1}{3}a^{5}-\frac{1}{3}a$, $\frac{1}{183}a^{22}-\frac{13}{183}a^{21}+\frac{26}{183}a^{20}+\frac{5}{61}a^{19}-\frac{64}{183}a^{18}+\frac{64}{183}a^{17}+\frac{49}{183}a^{16}+\frac{4}{61}a^{15}-\frac{1}{61}a^{14}-\frac{30}{61}a^{13}-\frac{80}{183}a^{12}+\frac{26}{183}a^{11}-\frac{19}{183}a^{10}+\frac{26}{61}a^{9}-\frac{17}{61}a^{8}-\frac{22}{61}a^{7}+\frac{43}{183}a^{6}+\frac{44}{183}a^{5}+\frac{35}{183}a^{4}-\frac{16}{61}a^{3}-\frac{34}{183}a^{2}+\frac{25}{183}a+\frac{22}{183}$, $\frac{1}{183}a^{23}-\frac{7}{61}a^{21}-\frac{13}{183}a^{20}-\frac{52}{183}a^{19}-\frac{12}{61}a^{18}+\frac{9}{61}a^{17}-\frac{83}{183}a^{16}-\frac{10}{61}a^{15}+\frac{18}{61}a^{14}+\frac{31}{183}a^{13}+\frac{28}{61}a^{12}+\frac{25}{61}a^{11}+\frac{14}{183}a^{10}+\frac{16}{61}a^{9}+\frac{1}{61}a^{8}-\frac{83}{183}a^{7}+\frac{18}{61}a^{6}-\frac{1}{61}a^{5}+\frac{41}{183}a^{4}+\frac{74}{183}a^{3}-\frac{17}{61}a^{2}+\frac{14}{61}a-\frac{80}{183}$, $\frac{1}{366}a^{24}-\frac{7}{61}a^{21}+\frac{1}{61}a^{20}+\frac{16}{61}a^{19}+\frac{49}{122}a^{18}+\frac{17}{61}a^{17}-\frac{80}{183}a^{16}-\frac{10}{61}a^{15}-\frac{16}{183}a^{14}+\frac{4}{61}a^{13}-\frac{47}{122}a^{12}+\frac{12}{61}a^{11}+\frac{38}{183}a^{10}-\frac{1}{61}a^{9}-\frac{28}{183}a^{8}+\frac{22}{61}a^{7}-\frac{5}{122}a^{6}-\frac{12}{61}a^{5}+\frac{23}{61}a^{4}-\frac{24}{61}a^{3}+\frac{10}{61}a^{2}+\frac{3}{61}a+\frac{35}{366}$, $\frac{1}{366}a^{25}-\frac{26}{183}a^{21}-\frac{16}{183}a^{20}+\frac{15}{122}a^{19}-\frac{4}{61}a^{18}-\frac{26}{61}a^{17}-\frac{38}{183}a^{16}+\frac{53}{183}a^{15}-\frac{17}{61}a^{14}+\frac{35}{122}a^{13}+\frac{1}{61}a^{12}-\frac{29}{61}a^{11}+\frac{86}{183}a^{10}-\frac{37}{183}a^{9}-\frac{30}{61}a^{8}+\frac{47}{122}a^{7}-\frac{16}{61}a^{6}-\frac{44}{183}a^{5}+\frac{53}{183}a^{4}-\frac{21}{61}a^{3}+\frac{9}{61}a^{2}-\frac{45}{122}a-\frac{26}{183}$, $\frac{1}{366}a^{26}+\frac{4}{61}a^{21}+\frac{55}{366}a^{20}+\frac{4}{61}a^{19}+\frac{88}{183}a^{18}-\frac{7}{61}a^{17}-\frac{5}{61}a^{16}+\frac{26}{61}a^{15}-\frac{17}{122}a^{14}+\frac{14}{61}a^{13}+\frac{29}{183}a^{12}+\frac{10}{61}a^{11}+\frac{79}{183}a^{10}-\frac{25}{61}a^{9}+\frac{17}{122}a^{8}+\frac{22}{61}a^{7}-\frac{8}{61}a^{6}-\frac{28}{61}a^{5}-\frac{7}{183}a^{4}+\frac{20}{61}a^{3}-\frac{73}{366}a^{2}+\frac{25}{61}a-\frac{38}{183}$, $\frac{1}{366}a^{27}+\frac{1}{366}a^{21}+\frac{5}{183}a^{20}+\frac{91}{183}a^{19}+\frac{5}{61}a^{18}-\frac{17}{61}a^{17}-\frac{83}{183}a^{16}+\frac{9}{122}a^{15}+\frac{26}{61}a^{14}+\frac{11}{183}a^{13}+\frac{25}{61}a^{12}-\frac{50}{183}a^{11}-\frac{91}{183}a^{10}+\frac{3}{122}a^{9}-\frac{18}{61}a^{8}+\frac{12}{61}a^{7}-\frac{17}{61}a^{6}+\frac{14}{183}a^{5}-\frac{55}{183}a^{4}-\frac{19}{366}a^{3}-\frac{22}{61}a^{2}+\frac{28}{183}a-\frac{20}{183}$, $\frac{1}{86742}a^{28}+\frac{5}{43371}a^{27}-\frac{32}{43371}a^{26}+\frac{20}{43371}a^{25}-\frac{16}{14457}a^{24}+\frac{62}{43371}a^{23}+\frac{55}{86742}a^{22}-\frac{3326}{43371}a^{21}-\frac{1126}{43371}a^{20}+\frac{5159}{43371}a^{19}-\frac{5866}{43371}a^{18}+\frac{4433}{43371}a^{17}-\frac{4627}{9638}a^{16}+\frac{11312}{43371}a^{15}-\frac{5794}{43371}a^{14}+\frac{2146}{43371}a^{13}+\frac{17930}{43371}a^{12}-\frac{5803}{43371}a^{11}-\frac{31271}{86742}a^{10}-\frac{14926}{43371}a^{9}+\frac{1420}{4819}a^{8}-\frac{20947}{43371}a^{7}-\frac{4069}{43371}a^{6}+\frac{7549}{43371}a^{5}-\frac{377}{1422}a^{4}-\frac{14983}{43371}a^{3}-\frac{2551}{14457}a^{2}-\frac{4699}{14457}a+\frac{137}{549}$, $\frac{1}{21329077122}a^{29}+\frac{1201}{3554846187}a^{28}-\frac{17020307}{21329077122}a^{27}-\frac{16430749}{21329077122}a^{26}-\frac{2283245}{10664538561}a^{25}-\frac{8757935}{21329077122}a^{24}-\frac{1741379}{7109692374}a^{23}+\frac{840626}{10664538561}a^{22}+\frac{2555071805}{21329077122}a^{21}+\frac{202217039}{7109692374}a^{20}+\frac{311887136}{1184948729}a^{19}-\frac{1961336695}{7109692374}a^{18}+\frac{7379174999}{21329077122}a^{17}-\frac{2438255704}{10664538561}a^{16}+\frac{676543035}{2369897458}a^{15}-\frac{7764280643}{21329077122}a^{14}+\frac{899228806}{10664538561}a^{13}-\frac{2620242413}{7109692374}a^{12}-\frac{819827509}{7109692374}a^{11}-\frac{1285983458}{3554846187}a^{10}+\frac{3729353429}{21329077122}a^{9}-\frac{5121311393}{21329077122}a^{8}-\frac{951706853}{3554846187}a^{7}-\frac{5724508979}{21329077122}a^{6}+\frac{9674847077}{21329077122}a^{5}-\frac{1636780355}{3554846187}a^{4}+\frac{8417692691}{21329077122}a^{3}+\frac{1765542241}{7109692374}a^{2}-\frac{505827607}{10664538561}a-\frac{736375}{1942362}$, $\frac{1}{17\!\cdots\!42}a^{30}+\frac{24\!\cdots\!09}{17\!\cdots\!42}a^{29}-\frac{15\!\cdots\!41}{87\!\cdots\!71}a^{28}-\frac{87\!\cdots\!89}{87\!\cdots\!71}a^{27}-\frac{30\!\cdots\!89}{10\!\cdots\!33}a^{26}-\frac{54\!\cdots\!56}{87\!\cdots\!71}a^{25}-\frac{11\!\cdots\!01}{17\!\cdots\!42}a^{24}+\frac{10\!\cdots\!51}{17\!\cdots\!42}a^{23}+\frac{20\!\cdots\!77}{87\!\cdots\!71}a^{22}-\frac{13\!\cdots\!92}{30\!\cdots\!99}a^{21}+\frac{12\!\cdots\!28}{87\!\cdots\!71}a^{20}-\frac{42\!\cdots\!44}{87\!\cdots\!71}a^{19}+\frac{25\!\cdots\!51}{58\!\cdots\!14}a^{18}-\frac{69\!\cdots\!81}{17\!\cdots\!42}a^{17}-\frac{74\!\cdots\!68}{87\!\cdots\!71}a^{16}-\frac{62\!\cdots\!96}{87\!\cdots\!71}a^{15}+\frac{13\!\cdots\!24}{87\!\cdots\!71}a^{14}-\frac{14\!\cdots\!16}{87\!\cdots\!71}a^{13}+\frac{96\!\cdots\!37}{17\!\cdots\!42}a^{12}+\frac{13\!\cdots\!65}{60\!\cdots\!98}a^{11}-\frac{96\!\cdots\!10}{97\!\cdots\!19}a^{10}-\frac{37\!\cdots\!36}{87\!\cdots\!71}a^{9}-\frac{13\!\cdots\!21}{87\!\cdots\!71}a^{8}+\frac{13\!\cdots\!59}{87\!\cdots\!71}a^{7}+\frac{25\!\cdots\!09}{17\!\cdots\!42}a^{6}-\frac{69\!\cdots\!21}{17\!\cdots\!42}a^{5}-\frac{77\!\cdots\!65}{29\!\cdots\!57}a^{4}+\frac{68\!\cdots\!28}{29\!\cdots\!57}a^{3}+\frac{41\!\cdots\!21}{87\!\cdots\!71}a^{2}-\frac{89\!\cdots\!66}{29\!\cdots\!57}a+\frac{10\!\cdots\!30}{26\!\cdots\!97}$, $\frac{1}{40\!\cdots\!02}a^{31}+\frac{16\!\cdots\!75}{13\!\cdots\!34}a^{30}+\frac{40\!\cdots\!92}{20\!\cdots\!01}a^{29}+\frac{22\!\cdots\!11}{40\!\cdots\!02}a^{28}+\frac{16\!\cdots\!77}{20\!\cdots\!01}a^{27}-\frac{65\!\cdots\!41}{40\!\cdots\!02}a^{26}-\frac{18\!\cdots\!63}{45\!\cdots\!78}a^{25}-\frac{35\!\cdots\!25}{40\!\cdots\!02}a^{24}-\frac{93\!\cdots\!67}{20\!\cdots\!01}a^{23}+\frac{62\!\cdots\!85}{13\!\cdots\!34}a^{22}-\frac{12\!\cdots\!98}{67\!\cdots\!67}a^{21}+\frac{20\!\cdots\!11}{13\!\cdots\!34}a^{20}-\frac{62\!\cdots\!81}{40\!\cdots\!02}a^{19}-\frac{75\!\cdots\!03}{40\!\cdots\!02}a^{18}-\frac{12\!\cdots\!90}{11\!\cdots\!47}a^{17}+\frac{39\!\cdots\!09}{40\!\cdots\!02}a^{16}-\frac{64\!\cdots\!02}{20\!\cdots\!01}a^{15}-\frac{16\!\cdots\!67}{13\!\cdots\!34}a^{14}+\frac{19\!\cdots\!33}{17\!\cdots\!46}a^{13}-\frac{52\!\cdots\!67}{13\!\cdots\!34}a^{12}+\frac{91\!\cdots\!90}{20\!\cdots\!01}a^{11}-\frac{17\!\cdots\!31}{14\!\cdots\!38}a^{10}-\frac{11\!\cdots\!69}{67\!\cdots\!67}a^{9}+\frac{10\!\cdots\!01}{40\!\cdots\!02}a^{8}-\frac{13\!\cdots\!29}{40\!\cdots\!02}a^{7}-\frac{41\!\cdots\!41}{13\!\cdots\!34}a^{6}-\frac{11\!\cdots\!20}{70\!\cdots\!69}a^{5}-\frac{32\!\cdots\!69}{13\!\cdots\!34}a^{4}-\frac{69\!\cdots\!81}{20\!\cdots\!01}a^{3}+\frac{51\!\cdots\!67}{14\!\cdots\!38}a^{2}+\frac{24\!\cdots\!03}{67\!\cdots\!67}a-\frac{60\!\cdots\!50}{61\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{8}\times C_{8}\times C_{80}$, which has order $10240$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{19385174692504488717023868075295820795825440}{81307596511916590191493092054594891530840594045673} a^{31} + \frac{20119496990548484637434798331638541654122492}{27102532170638863397164364018198297176946864681891} a^{30} + \frac{786761668559484738106905287628036173341551496}{81307596511916590191493092054594891530840594045673} a^{29} - \frac{526092839570350811041738551470472301976941875}{27102532170638863397164364018198297176946864681891} a^{28} - \frac{5526091488932794030230391682914361681142680256}{27102532170638863397164364018198297176946864681891} a^{27} + \frac{6893259762898672631845678453463707210799534669}{27102532170638863397164364018198297176946864681891} a^{26} + \frac{67355156610490962990966390129067517505103784952}{27102532170638863397164364018198297176946864681891} a^{25} - \frac{68383204048755407756008600823105428285168614571}{27102532170638863397164364018198297176946864681891} a^{24} - \frac{1505566306608125287634972243250061338235259653004}{81307596511916590191493092054594891530840594045673} a^{23} + \frac{676958541876131703984365189896118612928002430971}{27102532170638863397164364018198297176946864681891} a^{22} + \frac{2407849843973540189428048289634913994853419240704}{27102532170638863397164364018198297176946864681891} a^{21} - \frac{6007514052029489694731307670197522331340023886602}{27102532170638863397164364018198297176946864681891} a^{20} - \frac{18938925257078751330172751843384555086957774613144}{81307596511916590191493092054594891530840594045673} a^{19} + \frac{37054576483655419074392322854997242795387795493164}{27102532170638863397164364018198297176946864681891} a^{18} - \frac{11305546780997503825808702249235936690038694802940}{27102532170638863397164364018198297176946864681891} a^{17} - \frac{133801309104001537028767539030606936935840225331412}{27102532170638863397164364018198297176946864681891} a^{16} + \frac{197223445199938836904703385452984493383190724147916}{27102532170638863397164364018198297176946864681891} a^{15} + \frac{2218710356062701305657064338312859010257004918111}{343070027476441308824865367318965787049960312429} a^{14} - \frac{2848989425106609516041678268759342444708337414813544}{81307596511916590191493092054594891530840594045673} a^{13} + \frac{606965023372971253366903698398846033283536756829840}{27102532170638863397164364018198297176946864681891} a^{12} + \frac{7142977879634433283189752234175147553109862413887432}{81307596511916590191493092054594891530840594045673} a^{11} - \frac{3545912015529641554013558210239497929482804853097964}{27102532170638863397164364018198297176946864681891} a^{10} - \frac{3059343612712702759553386913059585812861553207976994}{27102532170638863397164364018198297176946864681891} a^{9} + \frac{7773359042265854787582834091687704958027720560199028}{27102532170638863397164364018198297176946864681891} a^{8} + \frac{3054913888381717101436744091192061219718801623304456}{81307596511916590191493092054594891530840594045673} a^{7} - \frac{9290826271276224585025536129345580738947998798002801}{27102532170638863397164364018198297176946864681891} a^{6} + \frac{8452332662347426235378288739646023323847706954930960}{81307596511916590191493092054594891530840594045673} a^{5} + \frac{6914958304349131190560612257137081095608965563380792}{27102532170638863397164364018198297176946864681891} a^{4} - \frac{8295620990887502528126070382105836269690347703686950}{27102532170638863397164364018198297176946864681891} a^{3} + \frac{4354978154289187833589011749367067682449181226279284}{27102532170638863397164364018198297176946864681891} a^{2} - \frac{3405004050828837289429580168801595702360736288233566}{81307596511916590191493092054594891530840594045673} a + \frac{12554155766438046390130075935560535868201999467}{2468129694075117329675290412366660338488923111} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15\!\cdots\!64}{59\!\cdots\!59}a^{31}-\frac{60\!\cdots\!70}{59\!\cdots\!59}a^{30}-\frac{44\!\cdots\!23}{42\!\cdots\!81}a^{29}+\frac{35\!\cdots\!89}{11\!\cdots\!18}a^{28}+\frac{13\!\cdots\!93}{59\!\cdots\!59}a^{27}-\frac{26\!\cdots\!74}{59\!\cdots\!59}a^{26}-\frac{32\!\cdots\!99}{11\!\cdots\!18}a^{25}+\frac{29\!\cdots\!22}{59\!\cdots\!59}a^{24}+\frac{12\!\cdots\!31}{59\!\cdots\!59}a^{23}-\frac{51\!\cdots\!03}{11\!\cdots\!18}a^{22}-\frac{53\!\cdots\!20}{59\!\cdots\!59}a^{21}+\frac{19\!\cdots\!74}{59\!\cdots\!59}a^{20}+\frac{16\!\cdots\!25}{11\!\cdots\!18}a^{19}-\frac{10\!\cdots\!59}{59\!\cdots\!59}a^{18}+\frac{13\!\cdots\!19}{97\!\cdots\!19}a^{17}+\frac{70\!\cdots\!53}{11\!\cdots\!18}a^{16}-\frac{71\!\cdots\!19}{59\!\cdots\!59}a^{15}-\frac{25\!\cdots\!83}{59\!\cdots\!59}a^{14}+\frac{56\!\cdots\!71}{11\!\cdots\!18}a^{13}-\frac{28\!\cdots\!43}{59\!\cdots\!59}a^{12}-\frac{58\!\cdots\!32}{59\!\cdots\!59}a^{11}+\frac{26\!\cdots\!63}{11\!\cdots\!18}a^{10}+\frac{44\!\cdots\!23}{59\!\cdots\!59}a^{9}-\frac{27\!\cdots\!52}{59\!\cdots\!59}a^{8}+\frac{11\!\cdots\!15}{11\!\cdots\!18}a^{7}+\frac{32\!\cdots\!63}{59\!\cdots\!59}a^{6}-\frac{18\!\cdots\!11}{59\!\cdots\!59}a^{5}-\frac{45\!\cdots\!29}{11\!\cdots\!18}a^{4}+\frac{32\!\cdots\!37}{59\!\cdots\!59}a^{3}-\frac{15\!\cdots\!76}{59\!\cdots\!59}a^{2}+\frac{64\!\cdots\!47}{11\!\cdots\!18}a-\frac{23\!\cdots\!73}{54\!\cdots\!39}$, $\frac{32\!\cdots\!38}{67\!\cdots\!67}a^{31}-\frac{16\!\cdots\!25}{13\!\cdots\!34}a^{30}-\frac{27\!\cdots\!27}{13\!\cdots\!34}a^{29}+\frac{37\!\cdots\!81}{13\!\cdots\!34}a^{28}+\frac{58\!\cdots\!33}{13\!\cdots\!34}a^{27}-\frac{18\!\cdots\!33}{67\!\cdots\!67}a^{26}-\frac{35\!\cdots\!74}{67\!\cdots\!67}a^{25}+\frac{47\!\cdots\!95}{22\!\cdots\!89}a^{24}+\frac{54\!\cdots\!85}{13\!\cdots\!34}a^{23}-\frac{37\!\cdots\!45}{13\!\cdots\!34}a^{22}-\frac{27\!\cdots\!75}{13\!\cdots\!34}a^{21}+\frac{22\!\cdots\!18}{67\!\cdots\!67}a^{20}+\frac{16\!\cdots\!77}{22\!\cdots\!89}a^{19}-\frac{54\!\cdots\!86}{22\!\cdots\!89}a^{18}-\frac{57\!\cdots\!35}{74\!\cdots\!98}a^{17}+\frac{13\!\cdots\!61}{13\!\cdots\!34}a^{16}-\frac{38\!\cdots\!31}{45\!\cdots\!78}a^{15}-\frac{47\!\cdots\!51}{22\!\cdots\!89}a^{14}+\frac{41\!\cdots\!00}{67\!\cdots\!67}a^{13}-\frac{22\!\cdots\!73}{67\!\cdots\!67}a^{12}-\frac{89\!\cdots\!71}{45\!\cdots\!78}a^{11}+\frac{20\!\cdots\!43}{13\!\cdots\!34}a^{10}+\frac{50\!\cdots\!55}{13\!\cdots\!34}a^{9}-\frac{94\!\cdots\!29}{22\!\cdots\!89}a^{8}-\frac{28\!\cdots\!00}{67\!\cdots\!67}a^{7}+\frac{40\!\cdots\!34}{67\!\cdots\!67}a^{6}+\frac{10\!\cdots\!33}{45\!\cdots\!78}a^{5}-\frac{26\!\cdots\!31}{45\!\cdots\!78}a^{4}+\frac{32\!\cdots\!15}{13\!\cdots\!34}a^{3}+\frac{24\!\cdots\!56}{67\!\cdots\!67}a^{2}-\frac{16\!\cdots\!41}{67\!\cdots\!67}a+\frac{40\!\cdots\!27}{12\!\cdots\!14}$, $\frac{31\!\cdots\!04}{22\!\cdots\!89}a^{31}-\frac{10\!\cdots\!88}{22\!\cdots\!89}a^{30}-\frac{12\!\cdots\!59}{22\!\cdots\!89}a^{29}+\frac{31\!\cdots\!92}{22\!\cdots\!89}a^{28}+\frac{27\!\cdots\!54}{22\!\cdots\!89}a^{27}-\frac{44\!\cdots\!43}{22\!\cdots\!89}a^{26}-\frac{33\!\cdots\!82}{22\!\cdots\!89}a^{25}+\frac{46\!\cdots\!53}{22\!\cdots\!89}a^{24}+\frac{26\!\cdots\!49}{22\!\cdots\!89}a^{23}-\frac{42\!\cdots\!40}{22\!\cdots\!89}a^{22}-\frac{78\!\cdots\!64}{13\!\cdots\!09}a^{21}+\frac{34\!\cdots\!61}{22\!\cdots\!89}a^{20}+\frac{31\!\cdots\!98}{22\!\cdots\!89}a^{19}-\frac{20\!\cdots\!73}{22\!\cdots\!89}a^{18}+\frac{12\!\cdots\!19}{37\!\cdots\!49}a^{17}+\frac{75\!\cdots\!21}{22\!\cdots\!89}a^{16}-\frac{11\!\cdots\!48}{22\!\cdots\!89}a^{15}-\frac{35\!\cdots\!63}{77\!\cdots\!41}a^{14}+\frac{66\!\cdots\!74}{28\!\cdots\!91}a^{13}-\frac{35\!\cdots\!33}{22\!\cdots\!89}a^{12}-\frac{13\!\cdots\!91}{22\!\cdots\!89}a^{11}+\frac{21\!\cdots\!00}{22\!\cdots\!89}a^{10}+\frac{18\!\cdots\!22}{22\!\cdots\!89}a^{9}-\frac{48\!\cdots\!45}{22\!\cdots\!89}a^{8}-\frac{11\!\cdots\!52}{22\!\cdots\!89}a^{7}+\frac{62\!\cdots\!09}{22\!\cdots\!89}a^{6}-\frac{25\!\cdots\!55}{77\!\cdots\!41}a^{5}-\frac{50\!\cdots\!24}{22\!\cdots\!89}a^{4}+\frac{39\!\cdots\!52}{22\!\cdots\!89}a^{3}-\frac{13\!\cdots\!35}{22\!\cdots\!89}a^{2}+\frac{22\!\cdots\!07}{22\!\cdots\!89}a-\frac{21\!\cdots\!42}{20\!\cdots\!69}$, $\frac{10\!\cdots\!70}{67\!\cdots\!67}a^{31}-\frac{71\!\cdots\!09}{13\!\cdots\!34}a^{30}-\frac{24\!\cdots\!31}{40\!\cdots\!02}a^{29}+\frac{59\!\cdots\!65}{40\!\cdots\!02}a^{28}+\frac{57\!\cdots\!77}{45\!\cdots\!78}a^{27}-\frac{28\!\cdots\!99}{13\!\cdots\!34}a^{26}-\frac{63\!\cdots\!99}{40\!\cdots\!02}a^{25}+\frac{15\!\cdots\!96}{70\!\cdots\!69}a^{24}+\frac{47\!\cdots\!99}{40\!\cdots\!02}a^{23}-\frac{27\!\cdots\!41}{13\!\cdots\!34}a^{22}-\frac{74\!\cdots\!89}{13\!\cdots\!34}a^{21}+\frac{67\!\cdots\!57}{40\!\cdots\!02}a^{20}+\frac{47\!\cdots\!69}{40\!\cdots\!02}a^{19}-\frac{19\!\cdots\!86}{20\!\cdots\!01}a^{18}+\frac{34\!\cdots\!55}{66\!\cdots\!82}a^{17}+\frac{13\!\cdots\!71}{40\!\cdots\!02}a^{16}-\frac{23\!\cdots\!99}{40\!\cdots\!02}a^{15}-\frac{47\!\cdots\!19}{13\!\cdots\!34}a^{14}+\frac{11\!\cdots\!01}{45\!\cdots\!78}a^{13}-\frac{41\!\cdots\!60}{20\!\cdots\!01}a^{12}-\frac{23\!\cdots\!17}{40\!\cdots\!02}a^{11}+\frac{42\!\cdots\!63}{40\!\cdots\!02}a^{10}+\frac{25\!\cdots\!67}{40\!\cdots\!02}a^{9}-\frac{32\!\cdots\!91}{14\!\cdots\!38}a^{8}+\frac{27\!\cdots\!09}{40\!\cdots\!02}a^{7}+\frac{21\!\cdots\!39}{77\!\cdots\!41}a^{6}-\frac{50\!\cdots\!31}{45\!\cdots\!78}a^{5}-\frac{85\!\cdots\!31}{40\!\cdots\!02}a^{4}+\frac{98\!\cdots\!65}{40\!\cdots\!02}a^{3}-\frac{48\!\cdots\!13}{45\!\cdots\!78}a^{2}+\frac{95\!\cdots\!11}{40\!\cdots\!02}a-\frac{83\!\cdots\!97}{37\!\cdots\!42}$, $\frac{12\!\cdots\!90}{22\!\cdots\!89}a^{31}-\frac{26\!\cdots\!35}{13\!\cdots\!34}a^{30}-\frac{29\!\cdots\!95}{13\!\cdots\!34}a^{29}+\frac{38\!\cdots\!10}{67\!\cdots\!67}a^{28}+\frac{62\!\cdots\!75}{13\!\cdots\!34}a^{27}-\frac{11\!\cdots\!15}{13\!\cdots\!34}a^{26}-\frac{12\!\cdots\!48}{22\!\cdots\!89}a^{25}+\frac{60\!\cdots\!05}{67\!\cdots\!67}a^{24}+\frac{57\!\cdots\!15}{13\!\cdots\!34}a^{23}-\frac{54\!\cdots\!70}{67\!\cdots\!67}a^{22}-\frac{26\!\cdots\!75}{13\!\cdots\!34}a^{21}+\frac{85\!\cdots\!85}{13\!\cdots\!34}a^{20}+\frac{33\!\cdots\!00}{85\!\cdots\!73}a^{19}-\frac{81\!\cdots\!15}{22\!\cdots\!89}a^{18}+\frac{16\!\cdots\!25}{74\!\cdots\!98}a^{17}+\frac{83\!\cdots\!30}{67\!\cdots\!67}a^{16}-\frac{30\!\cdots\!97}{13\!\cdots\!34}a^{15}-\frac{16\!\cdots\!85}{13\!\cdots\!34}a^{14}+\frac{63\!\cdots\!75}{67\!\cdots\!67}a^{13}-\frac{55\!\cdots\!40}{67\!\cdots\!67}a^{12}-\frac{28\!\cdots\!15}{13\!\cdots\!34}a^{11}+\frac{93\!\cdots\!48}{22\!\cdots\!89}a^{10}+\frac{96\!\cdots\!75}{45\!\cdots\!78}a^{9}-\frac{12\!\cdots\!95}{13\!\cdots\!34}a^{8}+\frac{44\!\cdots\!65}{67\!\cdots\!67}a^{7}+\frac{74\!\cdots\!00}{67\!\cdots\!67}a^{6}-\frac{62\!\cdots\!71}{13\!\cdots\!34}a^{5}-\frac{56\!\cdots\!00}{67\!\cdots\!67}a^{4}+\frac{42\!\cdots\!65}{45\!\cdots\!78}a^{3}-\frac{68\!\cdots\!75}{17\!\cdots\!46}a^{2}+\frac{55\!\cdots\!90}{67\!\cdots\!67}a-\frac{90\!\cdots\!09}{12\!\cdots\!14}$, $\frac{17\!\cdots\!00}{47\!\cdots\!33}a^{31}-\frac{22\!\cdots\!24}{15\!\cdots\!11}a^{30}-\frac{20\!\cdots\!52}{14\!\cdots\!99}a^{29}+\frac{59\!\cdots\!80}{14\!\cdots\!99}a^{28}+\frac{14\!\cdots\!72}{47\!\cdots\!33}a^{27}-\frac{30\!\cdots\!98}{47\!\cdots\!33}a^{26}-\frac{54\!\cdots\!30}{14\!\cdots\!99}a^{25}+\frac{98\!\cdots\!56}{14\!\cdots\!99}a^{24}+\frac{13\!\cdots\!32}{48\!\cdots\!31}a^{23}-\frac{97\!\cdots\!64}{15\!\cdots\!11}a^{22}-\frac{60\!\cdots\!68}{47\!\cdots\!33}a^{21}+\frac{66\!\cdots\!32}{14\!\cdots\!99}a^{20}+\frac{27\!\cdots\!38}{14\!\cdots\!99}a^{19}-\frac{36\!\cdots\!14}{14\!\cdots\!99}a^{18}+\frac{45\!\cdots\!60}{23\!\cdots\!59}a^{17}+\frac{11\!\cdots\!57}{14\!\cdots\!99}a^{16}-\frac{24\!\cdots\!08}{14\!\cdots\!99}a^{15}-\frac{12\!\cdots\!34}{19\!\cdots\!09}a^{14}+\frac{32\!\cdots\!66}{47\!\cdots\!33}a^{13}-\frac{96\!\cdots\!50}{14\!\cdots\!99}a^{12}-\frac{20\!\cdots\!64}{14\!\cdots\!99}a^{11}+\frac{45\!\cdots\!12}{14\!\cdots\!99}a^{10}+\frac{15\!\cdots\!44}{14\!\cdots\!99}a^{9}-\frac{95\!\cdots\!68}{14\!\cdots\!99}a^{8}+\frac{20\!\cdots\!58}{14\!\cdots\!99}a^{7}+\frac{38\!\cdots\!32}{47\!\cdots\!33}a^{6}-\frac{21\!\cdots\!12}{47\!\cdots\!33}a^{5}-\frac{82\!\cdots\!87}{14\!\cdots\!99}a^{4}+\frac{10\!\cdots\!00}{14\!\cdots\!99}a^{3}-\frac{16\!\cdots\!08}{47\!\cdots\!33}a^{2}+\frac{10\!\cdots\!42}{14\!\cdots\!99}a-\frac{80\!\cdots\!94}{12\!\cdots\!79}$, $\frac{18\!\cdots\!38}{20\!\cdots\!01}a^{31}-\frac{29\!\cdots\!01}{20\!\cdots\!01}a^{30}-\frac{16\!\cdots\!25}{40\!\cdots\!02}a^{29}+\frac{58\!\cdots\!13}{40\!\cdots\!02}a^{28}+\frac{17\!\cdots\!74}{20\!\cdots\!01}a^{27}+\frac{40\!\cdots\!91}{13\!\cdots\!34}a^{26}-\frac{40\!\cdots\!17}{40\!\cdots\!02}a^{25}-\frac{22\!\cdots\!11}{40\!\cdots\!02}a^{24}+\frac{29\!\cdots\!47}{40\!\cdots\!02}a^{23}+\frac{70\!\cdots\!43}{40\!\cdots\!02}a^{22}-\frac{26\!\cdots\!76}{67\!\cdots\!67}a^{21}+\frac{11\!\cdots\!73}{40\!\cdots\!02}a^{20}+\frac{67\!\cdots\!43}{40\!\cdots\!02}a^{19}-\frac{12\!\cdots\!65}{40\!\cdots\!02}a^{18}-\frac{30\!\cdots\!43}{66\!\cdots\!82}a^{17}+\frac{62\!\cdots\!69}{40\!\cdots\!02}a^{16}-\frac{27\!\cdots\!37}{20\!\cdots\!01}a^{15}-\frac{16\!\cdots\!11}{40\!\cdots\!02}a^{14}+\frac{34\!\cdots\!65}{45\!\cdots\!78}a^{13}+\frac{27\!\cdots\!03}{40\!\cdots\!02}a^{12}-\frac{12\!\cdots\!67}{40\!\cdots\!02}a^{11}-\frac{84\!\cdots\!75}{40\!\cdots\!02}a^{10}+\frac{14\!\cdots\!78}{20\!\cdots\!01}a^{9}-\frac{10\!\cdots\!29}{14\!\cdots\!38}a^{8}-\frac{36\!\cdots\!69}{40\!\cdots\!02}a^{7}+\frac{20\!\cdots\!17}{14\!\cdots\!38}a^{6}+\frac{18\!\cdots\!21}{29\!\cdots\!18}a^{5}-\frac{13\!\cdots\!65}{40\!\cdots\!02}a^{4}+\frac{13\!\cdots\!69}{20\!\cdots\!01}a^{3}-\frac{81\!\cdots\!09}{13\!\cdots\!34}a^{2}+\frac{34\!\cdots\!47}{13\!\cdots\!34}a-\frac{15\!\cdots\!49}{37\!\cdots\!42}$, $\frac{55\!\cdots\!71}{20\!\cdots\!01}a^{31}-\frac{32\!\cdots\!77}{40\!\cdots\!02}a^{30}-\frac{22\!\cdots\!58}{20\!\cdots\!01}a^{29}+\frac{42\!\cdots\!47}{20\!\cdots\!01}a^{28}+\frac{97\!\cdots\!27}{40\!\cdots\!02}a^{27}-\frac{17\!\cdots\!00}{67\!\cdots\!67}a^{26}-\frac{59\!\cdots\!89}{20\!\cdots\!01}a^{25}+\frac{10\!\cdots\!81}{40\!\cdots\!02}a^{24}+\frac{45\!\cdots\!93}{20\!\cdots\!01}a^{23}-\frac{52\!\cdots\!98}{20\!\cdots\!01}a^{22}-\frac{15\!\cdots\!31}{13\!\cdots\!34}a^{21}+\frac{49\!\cdots\!70}{20\!\cdots\!01}a^{20}+\frac{66\!\cdots\!69}{20\!\cdots\!01}a^{19}-\frac{63\!\cdots\!41}{40\!\cdots\!02}a^{18}+\frac{53\!\cdots\!76}{33\!\cdots\!41}a^{17}+\frac{12\!\cdots\!90}{20\!\cdots\!01}a^{16}-\frac{30\!\cdots\!83}{40\!\cdots\!02}a^{15}-\frac{20\!\cdots\!47}{20\!\cdots\!01}a^{14}+\frac{27\!\cdots\!24}{67\!\cdots\!67}a^{13}-\frac{69\!\cdots\!95}{40\!\cdots\!02}a^{12}-\frac{22\!\cdots\!20}{20\!\cdots\!01}a^{11}+\frac{27\!\cdots\!67}{20\!\cdots\!01}a^{10}+\frac{71\!\cdots\!13}{40\!\cdots\!02}a^{9}-\frac{66\!\cdots\!23}{20\!\cdots\!01}a^{8}-\frac{27\!\cdots\!29}{20\!\cdots\!01}a^{7}+\frac{17\!\cdots\!59}{40\!\cdots\!02}a^{6}-\frac{18\!\cdots\!28}{20\!\cdots\!01}a^{5}-\frac{26\!\cdots\!96}{70\!\cdots\!69}a^{4}+\frac{11\!\cdots\!01}{40\!\cdots\!02}a^{3}-\frac{14\!\cdots\!65}{22\!\cdots\!89}a^{2}+\frac{18\!\cdots\!02}{85\!\cdots\!73}a+\frac{20\!\cdots\!28}{18\!\cdots\!21}$, $\frac{11\!\cdots\!67}{22\!\cdots\!29}a^{31}-\frac{75\!\cdots\!91}{45\!\cdots\!58}a^{30}-\frac{89\!\cdots\!37}{45\!\cdots\!58}a^{29}+\frac{20\!\cdots\!27}{45\!\cdots\!58}a^{28}+\frac{19\!\cdots\!55}{45\!\cdots\!58}a^{27}-\frac{98\!\cdots\!87}{15\!\cdots\!86}a^{26}-\frac{23\!\cdots\!67}{45\!\cdots\!58}a^{25}+\frac{15\!\cdots\!32}{22\!\cdots\!29}a^{24}+\frac{17\!\cdots\!05}{45\!\cdots\!58}a^{23}-\frac{28\!\cdots\!95}{45\!\cdots\!58}a^{22}-\frac{20\!\cdots\!77}{10\!\cdots\!74}a^{21}+\frac{23\!\cdots\!57}{45\!\cdots\!58}a^{20}+\frac{20\!\cdots\!13}{45\!\cdots\!58}a^{19}-\frac{70\!\cdots\!33}{22\!\cdots\!29}a^{18}+\frac{11\!\cdots\!71}{93\!\cdots\!82}a^{17}+\frac{36\!\cdots\!57}{32\!\cdots\!22}a^{16}-\frac{78\!\cdots\!41}{45\!\cdots\!58}a^{15}-\frac{63\!\cdots\!55}{45\!\cdots\!58}a^{14}+\frac{12\!\cdots\!91}{15\!\cdots\!86}a^{13}-\frac{12\!\cdots\!44}{22\!\cdots\!29}a^{12}-\frac{89\!\cdots\!19}{45\!\cdots\!58}a^{11}+\frac{14\!\cdots\!55}{45\!\cdots\!58}a^{10}+\frac{11\!\cdots\!65}{45\!\cdots\!58}a^{9}-\frac{32\!\cdots\!85}{45\!\cdots\!58}a^{8}-\frac{40\!\cdots\!67}{45\!\cdots\!58}a^{7}+\frac{14\!\cdots\!47}{16\!\cdots\!11}a^{6}-\frac{99\!\cdots\!65}{45\!\cdots\!58}a^{5}-\frac{32\!\cdots\!73}{45\!\cdots\!58}a^{4}+\frac{30\!\cdots\!39}{45\!\cdots\!58}a^{3}-\frac{40\!\cdots\!31}{15\!\cdots\!86}a^{2}+\frac{76\!\cdots\!23}{15\!\cdots\!86}a-\frac{19\!\cdots\!79}{41\!\cdots\!18}$, $\frac{37\!\cdots\!93}{20\!\cdots\!01}a^{31}-\frac{27\!\cdots\!05}{40\!\cdots\!02}a^{30}-\frac{29\!\cdots\!57}{40\!\cdots\!02}a^{29}+\frac{13\!\cdots\!50}{67\!\cdots\!67}a^{28}+\frac{61\!\cdots\!31}{40\!\cdots\!02}a^{27}-\frac{13\!\cdots\!01}{46\!\cdots\!46}a^{26}-\frac{37\!\cdots\!11}{20\!\cdots\!01}a^{25}+\frac{12\!\cdots\!63}{40\!\cdots\!02}a^{24}+\frac{18\!\cdots\!75}{13\!\cdots\!34}a^{23}-\frac{57\!\cdots\!26}{20\!\cdots\!01}a^{22}-\frac{86\!\cdots\!15}{13\!\cdots\!34}a^{21}+\frac{97\!\cdots\!71}{45\!\cdots\!78}a^{20}+\frac{29\!\cdots\!56}{25\!\cdots\!19}a^{19}-\frac{55\!\cdots\!73}{45\!\cdots\!78}a^{18}+\frac{55\!\cdots\!91}{66\!\cdots\!82}a^{17}+\frac{82\!\cdots\!18}{20\!\cdots\!01}a^{16}-\frac{10\!\cdots\!55}{13\!\cdots\!34}a^{15}-\frac{14\!\cdots\!17}{40\!\cdots\!02}a^{14}+\frac{21\!\cdots\!23}{67\!\cdots\!67}a^{13}-\frac{40\!\cdots\!95}{13\!\cdots\!34}a^{12}-\frac{27\!\cdots\!83}{40\!\cdots\!02}a^{11}+\frac{97\!\cdots\!23}{67\!\cdots\!67}a^{10}+\frac{85\!\cdots\!65}{14\!\cdots\!38}a^{9}-\frac{12\!\cdots\!81}{40\!\cdots\!02}a^{8}+\frac{10\!\cdots\!18}{22\!\cdots\!89}a^{7}+\frac{14\!\cdots\!97}{40\!\cdots\!02}a^{6}-\frac{26\!\cdots\!43}{14\!\cdots\!38}a^{5}-\frac{18\!\cdots\!67}{70\!\cdots\!69}a^{4}+\frac{13\!\cdots\!77}{40\!\cdots\!02}a^{3}-\frac{72\!\cdots\!67}{45\!\cdots\!78}a^{2}+\frac{66\!\cdots\!29}{20\!\cdots\!01}a-\frac{14\!\cdots\!59}{61\!\cdots\!07}$, $\frac{18\!\cdots\!93}{20\!\cdots\!01}a^{31}-\frac{54\!\cdots\!93}{20\!\cdots\!01}a^{30}-\frac{78\!\cdots\!16}{20\!\cdots\!01}a^{29}+\frac{90\!\cdots\!83}{13\!\cdots\!34}a^{28}+\frac{16\!\cdots\!14}{20\!\cdots\!01}a^{27}-\frac{54\!\cdots\!48}{67\!\cdots\!67}a^{26}-\frac{40\!\cdots\!29}{40\!\cdots\!02}a^{25}+\frac{53\!\cdots\!76}{70\!\cdots\!69}a^{24}+\frac{51\!\cdots\!04}{67\!\cdots\!67}a^{23}-\frac{33\!\cdots\!49}{40\!\cdots\!02}a^{22}-\frac{25\!\cdots\!76}{67\!\cdots\!67}a^{21}+\frac{53\!\cdots\!19}{67\!\cdots\!67}a^{20}+\frac{47\!\cdots\!57}{40\!\cdots\!02}a^{19}-\frac{35\!\cdots\!68}{67\!\cdots\!67}a^{18}+\frac{61\!\cdots\!35}{33\!\cdots\!41}a^{17}+\frac{82\!\cdots\!95}{40\!\cdots\!02}a^{16}-\frac{16\!\cdots\!90}{67\!\cdots\!67}a^{15}-\frac{70\!\cdots\!32}{20\!\cdots\!01}a^{14}+\frac{18\!\cdots\!05}{13\!\cdots\!34}a^{13}-\frac{38\!\cdots\!23}{77\!\cdots\!41}a^{12}-\frac{77\!\cdots\!82}{20\!\cdots\!01}a^{11}+\frac{19\!\cdots\!01}{45\!\cdots\!78}a^{10}+\frac{43\!\cdots\!59}{70\!\cdots\!69}a^{9}-\frac{21\!\cdots\!68}{20\!\cdots\!01}a^{8}-\frac{69\!\cdots\!77}{13\!\cdots\!34}a^{7}+\frac{29\!\cdots\!49}{20\!\cdots\!01}a^{6}+\frac{55\!\cdots\!85}{14\!\cdots\!59}a^{5}-\frac{52\!\cdots\!89}{40\!\cdots\!02}a^{4}+\frac{17\!\cdots\!67}{20\!\cdots\!01}a^{3}-\frac{11\!\cdots\!43}{67\!\cdots\!67}a^{2}-\frac{51\!\cdots\!93}{40\!\cdots\!02}a+\frac{13\!\cdots\!76}{20\!\cdots\!69}$, $\frac{11\!\cdots\!53}{40\!\cdots\!02}a^{31}-\frac{19\!\cdots\!82}{20\!\cdots\!01}a^{30}-\frac{44\!\cdots\!37}{40\!\cdots\!02}a^{29}+\frac{10\!\cdots\!51}{40\!\cdots\!02}a^{28}+\frac{94\!\cdots\!45}{40\!\cdots\!02}a^{27}-\frac{78\!\cdots\!52}{20\!\cdots\!01}a^{26}-\frac{12\!\cdots\!45}{45\!\cdots\!78}a^{25}+\frac{16\!\cdots\!89}{40\!\cdots\!02}a^{24}+\frac{88\!\cdots\!71}{40\!\cdots\!02}a^{23}-\frac{15\!\cdots\!91}{40\!\cdots\!02}a^{22}-\frac{41\!\cdots\!13}{40\!\cdots\!02}a^{21}+\frac{60\!\cdots\!93}{20\!\cdots\!01}a^{20}+\frac{31\!\cdots\!85}{13\!\cdots\!34}a^{19}-\frac{79\!\cdots\!43}{45\!\cdots\!78}a^{18}+\frac{62\!\cdots\!33}{74\!\cdots\!98}a^{17}+\frac{25\!\cdots\!71}{40\!\cdots\!02}a^{16}-\frac{41\!\cdots\!77}{40\!\cdots\!02}a^{15}-\frac{14\!\cdots\!23}{20\!\cdots\!01}a^{14}+\frac{18\!\cdots\!53}{40\!\cdots\!02}a^{13}-\frac{14\!\cdots\!07}{40\!\cdots\!02}a^{12}-\frac{49\!\cdots\!37}{45\!\cdots\!78}a^{11}+\frac{25\!\cdots\!81}{13\!\cdots\!34}a^{10}+\frac{61\!\cdots\!75}{46\!\cdots\!46}a^{9}-\frac{85\!\cdots\!63}{20\!\cdots\!01}a^{8}-\frac{10\!\cdots\!27}{40\!\cdots\!02}a^{7}+\frac{21\!\cdots\!43}{40\!\cdots\!02}a^{6}-\frac{62\!\cdots\!63}{40\!\cdots\!02}a^{5}-\frac{16\!\cdots\!27}{40\!\cdots\!02}a^{4}+\frac{16\!\cdots\!25}{40\!\cdots\!02}a^{3}-\frac{34\!\cdots\!23}{20\!\cdots\!01}a^{2}+\frac{66\!\cdots\!76}{20\!\cdots\!01}a-\frac{10\!\cdots\!45}{37\!\cdots\!42}$, $\frac{31\!\cdots\!50}{20\!\cdots\!01}a^{31}-\frac{15\!\cdots\!81}{29\!\cdots\!18}a^{30}-\frac{25\!\cdots\!29}{40\!\cdots\!02}a^{29}+\frac{61\!\cdots\!79}{40\!\cdots\!02}a^{28}+\frac{26\!\cdots\!31}{20\!\cdots\!01}a^{27}-\frac{44\!\cdots\!11}{20\!\cdots\!01}a^{26}-\frac{36\!\cdots\!39}{22\!\cdots\!89}a^{25}+\frac{47\!\cdots\!77}{20\!\cdots\!01}a^{24}+\frac{48\!\cdots\!99}{40\!\cdots\!02}a^{23}-\frac{87\!\cdots\!47}{40\!\cdots\!02}a^{22}-\frac{11\!\cdots\!88}{20\!\cdots\!01}a^{21}+\frac{35\!\cdots\!36}{20\!\cdots\!01}a^{20}+\frac{80\!\cdots\!95}{67\!\cdots\!67}a^{19}-\frac{22\!\cdots\!59}{22\!\cdots\!89}a^{18}+\frac{40\!\cdots\!21}{74\!\cdots\!98}a^{17}+\frac{14\!\cdots\!79}{40\!\cdots\!02}a^{16}-\frac{12\!\cdots\!12}{20\!\cdots\!01}a^{15}-\frac{74\!\cdots\!86}{20\!\cdots\!01}a^{14}+\frac{53\!\cdots\!86}{20\!\cdots\!01}a^{13}-\frac{43\!\cdots\!59}{20\!\cdots\!01}a^{12}-\frac{27\!\cdots\!87}{45\!\cdots\!78}a^{11}+\frac{15\!\cdots\!23}{13\!\cdots\!34}a^{10}+\frac{43\!\cdots\!02}{67\!\cdots\!67}a^{9}-\frac{50\!\cdots\!95}{20\!\cdots\!01}a^{8}+\frac{24\!\cdots\!61}{20\!\cdots\!01}a^{7}+\frac{62\!\cdots\!66}{20\!\cdots\!01}a^{6}-\frac{51\!\cdots\!53}{40\!\cdots\!02}a^{5}-\frac{97\!\cdots\!99}{40\!\cdots\!02}a^{4}+\frac{54\!\cdots\!48}{20\!\cdots\!01}a^{3}-\frac{19\!\cdots\!73}{20\!\cdots\!01}a^{2}+\frac{12\!\cdots\!70}{20\!\cdots\!01}a+\frac{10\!\cdots\!29}{37\!\cdots\!42}$, $\frac{45\!\cdots\!84}{20\!\cdots\!01}a^{31}-\frac{19\!\cdots\!57}{22\!\cdots\!89}a^{30}-\frac{35\!\cdots\!39}{40\!\cdots\!02}a^{29}+\frac{50\!\cdots\!76}{20\!\cdots\!01}a^{28}+\frac{73\!\cdots\!29}{40\!\cdots\!02}a^{27}-\frac{78\!\cdots\!96}{20\!\cdots\!01}a^{26}-\frac{45\!\cdots\!27}{20\!\cdots\!01}a^{25}+\frac{84\!\cdots\!89}{20\!\cdots\!01}a^{24}+\frac{66\!\cdots\!37}{40\!\cdots\!02}a^{23}-\frac{25\!\cdots\!16}{67\!\cdots\!67}a^{22}-\frac{97\!\cdots\!65}{13\!\cdots\!34}a^{21}+\frac{56\!\cdots\!06}{20\!\cdots\!01}a^{20}+\frac{19\!\cdots\!70}{20\!\cdots\!01}a^{19}-\frac{10\!\cdots\!16}{67\!\cdots\!67}a^{18}+\frac{82\!\cdots\!97}{66\!\cdots\!82}a^{17}+\frac{97\!\cdots\!55}{20\!\cdots\!01}a^{16}-\frac{41\!\cdots\!03}{40\!\cdots\!02}a^{15}-\frac{18\!\cdots\!59}{67\!\cdots\!67}a^{14}+\frac{26\!\cdots\!32}{67\!\cdots\!67}a^{13}-\frac{86\!\cdots\!93}{20\!\cdots\!01}a^{12}-\frac{32\!\cdots\!95}{40\!\cdots\!02}a^{11}+\frac{42\!\cdots\!43}{22\!\cdots\!89}a^{10}+\frac{19\!\cdots\!63}{40\!\cdots\!02}a^{9}-\frac{79\!\cdots\!35}{20\!\cdots\!01}a^{8}+\frac{23\!\cdots\!06}{20\!\cdots\!01}a^{7}+\frac{10\!\cdots\!17}{22\!\cdots\!89}a^{6}-\frac{12\!\cdots\!23}{40\!\cdots\!02}a^{5}-\frac{61\!\cdots\!23}{20\!\cdots\!01}a^{4}+\frac{19\!\cdots\!41}{40\!\cdots\!02}a^{3}-\frac{50\!\cdots\!51}{20\!\cdots\!01}a^{2}+\frac{11\!\cdots\!53}{20\!\cdots\!01}a-\frac{89\!\cdots\!25}{18\!\cdots\!21}$, $\frac{41\!\cdots\!69}{45\!\cdots\!78}a^{31}-\frac{22\!\cdots\!31}{45\!\cdots\!78}a^{30}-\frac{63\!\cdots\!48}{20\!\cdots\!01}a^{29}+\frac{32\!\cdots\!41}{20\!\cdots\!01}a^{28}+\frac{42\!\cdots\!05}{67\!\cdots\!67}a^{27}-\frac{12\!\cdots\!39}{45\!\cdots\!78}a^{26}-\frac{53\!\cdots\!61}{70\!\cdots\!69}a^{25}+\frac{13\!\cdots\!33}{40\!\cdots\!02}a^{24}+\frac{10\!\cdots\!57}{20\!\cdots\!01}a^{23}-\frac{18\!\cdots\!05}{67\!\cdots\!67}a^{22}-\frac{33\!\cdots\!29}{22\!\cdots\!89}a^{21}+\frac{69\!\cdots\!75}{40\!\cdots\!02}a^{20}-\frac{18\!\cdots\!30}{20\!\cdots\!01}a^{19}-\frac{31\!\cdots\!55}{40\!\cdots\!02}a^{18}+\frac{45\!\cdots\!88}{33\!\cdots\!41}a^{17}+\frac{37\!\cdots\!07}{20\!\cdots\!01}a^{16}-\frac{15\!\cdots\!02}{20\!\cdots\!01}a^{15}+\frac{40\!\cdots\!19}{13\!\cdots\!34}a^{14}+\frac{14\!\cdots\!51}{67\!\cdots\!67}a^{13}-\frac{15\!\cdots\!31}{40\!\cdots\!02}a^{12}-\frac{44\!\cdots\!44}{20\!\cdots\!01}a^{11}+\frac{27\!\cdots\!55}{20\!\cdots\!01}a^{10}-\frac{11\!\cdots\!00}{20\!\cdots\!01}a^{9}-\frac{35\!\cdots\!29}{14\!\cdots\!38}a^{8}+\frac{47\!\cdots\!10}{20\!\cdots\!01}a^{7}+\frac{12\!\cdots\!01}{46\!\cdots\!46}a^{6}-\frac{25\!\cdots\!11}{67\!\cdots\!67}a^{5}-\frac{25\!\cdots\!40}{20\!\cdots\!01}a^{4}+\frac{83\!\cdots\!05}{20\!\cdots\!01}a^{3}-\frac{32\!\cdots\!13}{13\!\cdots\!34}a^{2}+\frac{21\!\cdots\!33}{40\!\cdots\!02}a-\frac{95\!\cdots\!90}{18\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 95287215485273.48 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 95287215485273.48 \cdot 10240}{6\cdot\sqrt{5981643090147991811559885370844487936000000000000000000000000}}\cr\approx \mathstrut & 0.392329520906071 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 4*x^31 - 38*x^30 + 118*x^29 + 790*x^28 - 1842*x^27 - 9626*x^26 + 20072*x^25 + 70123*x^24 - 176218*x^23 - 293732*x^22 + 1284032*x^21 + 219366*x^20 - 6794274*x^19 + 6681279*x^18 + 20297534*x^17 - 49420166*x^16 - 4100710*x^15 + 177618004*x^14 - 219341242*x^13 - 314737755*x^12 + 897468480*x^11 + 58509126*x^10 - 1745550454*x^9 + 821617744*x^8 + 1855727336*x^7 - 1690380687*x^6 - 1037802612*x^5 + 2331262742*x^4 - 1529717908*x^3 + 508183759*x^2 - 86254878*x + 6599581);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-195}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-3}, \sqrt{65})\), 4.0.4394000.2, 4.4.39546000.2, \(\Q(\sqrt{13}, \sqrt{-15})\), \(\Q(\sqrt{5}, \sqrt{-39})\), \(\Q(\sqrt{5}, \sqrt{13})\), \(\Q(\sqrt{-15}, \sqrt{-39})\), 4.0.4394000.1, 4.4.39546000.1, \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{5})\), 4.4.19773.1, 4.0.54925.1, 4.4.494325.1, 4.0.2197.1, 4.0.18000.1, 4.4.338000.1, 4.0.3042000.1, \(\Q(\zeta_{20})^+\), 8.0.1563886116000000.48, 8.0.1445900625.1, 8.0.1563886116000000.39, 8.0.19307236000000.5, 8.0.1563886116000000.66, 8.8.1563886116000000.7, 8.0.1563886116000000.47, 8.0.244357205625.2, 8.0.244357205625.1, 8.0.9253764000000.2, 8.0.9253764000000.5, 8.8.244357205625.1, 8.0.3016755625.1, 8.0.9253764000000.3, 8.8.114244000000.1, 8.0.390971529.1, 8.0.244357205625.3, 8.0.324000000.2, 8.0.9253764000000.9, 16.0.2445739783817565456000000000000.12, 16.0.59710443940858531640625.1, 16.0.85632148167696000000000000.7, 16.0.2445739783817565456000000000000.16, 16.0.372769361959696000000000000.2, 16.16.2445739783817565456000000000000.3, 16.0.2445739783817565456000000000000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{8}$ R ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.2.0.1}{2} }^{16}$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(13\) Copy content Toggle raw display 13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$