Normalized defining polynomial
\( x^{32} + 36 x^{30} + 812 x^{28} + 11180 x^{26} + 111660 x^{24} + 792804 x^{22} + 4239806 x^{20} + 16368060 x^{18} + 47307204 x^{16} + 95642940 x^{14} + 139391684 x^{12} + 125633292 x^{10} + 81082665 x^{8} + 31866640 x^{6} + 8588288 x^{4} + 872448 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(389,·)$, $\chi_{780}(577,·)$, $\chi_{780}(649,·)$, $\chi_{780}(239,·)$, $\chi_{780}(151,·)$, $\chi_{780}(103,·)$, $\chi_{780}(31,·)$, $\chi_{780}(547,·)$, $\chi_{780}(551,·)$, $\chi_{780}(359,·)$, $\chi_{780}(181,·)$, $\chi_{780}(521,·)$, $\chi_{780}(697,·)$, $\chi_{780}(287,·)$, $\chi_{780}(671,·)$, $\chi_{780}(317,·)$, $\chi_{780}(437,·)$, $\chi_{780}(701,·)$, $\chi_{780}(73,·)$, $\chi_{780}(209,·)$, $\chi_{780}(467,·)$, $\chi_{780}(469,·)$, $\chi_{780}(727,·)$, $\chi_{780}(473,·)$, $\chi_{780}(733,·)$, $\chi_{780}(443,·)$, $\chi_{780}(593,·)$, $\chi_{780}(619,·)$, $\chi_{780}(623,·)$, $\chi_{780}(499,·)$, $\chi_{780}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{6}$, $\frac{1}{4} a^{13} - \frac{1}{4} a$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{8} - \frac{3}{16} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{9} + \frac{13}{32} a^{3}$, $\frac{1}{32} a^{16} - \frac{1}{16} a^{10} + \frac{13}{32} a^{4}$, $\frac{1}{32} a^{17} - \frac{1}{16} a^{11} + \frac{13}{32} a^{5}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{12} + \frac{13}{32} a^{6}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{13} - \frac{3}{32} a^{7} - \frac{1}{2} a$, $\frac{1}{32} a^{20} + \frac{1}{32} a^{8} - \frac{7}{16} a^{2}$, $\frac{1}{64} a^{21} - \frac{1}{64} a^{15} - \frac{5}{64} a^{9} - \frac{3}{64} a^{3}$, $\frac{1}{128} a^{22} - \frac{1}{128} a^{16} + \frac{11}{128} a^{10} + \frac{13}{128} a^{4}$, $\frac{1}{128} a^{23} - \frac{1}{128} a^{17} + \frac{11}{128} a^{11} + \frac{13}{128} a^{5}$, $\frac{1}{5376} a^{24} + \frac{5}{5376} a^{22} + \frac{13}{1344} a^{20} - \frac{41}{5376} a^{18} - \frac{65}{5376} a^{16} + \frac{19}{672} a^{14} - \frac{5}{5376} a^{12} - \frac{593}{5376} a^{10} - \frac{95}{1344} a^{8} + \frac{1829}{5376} a^{6} + \frac{1717}{5376} a^{4} - \frac{73}{168} a^{2} + \frac{4}{21}$, $\frac{1}{10752} a^{25} + \frac{5}{10752} a^{23} + \frac{13}{2688} a^{21} - \frac{41}{10752} a^{19} - \frac{65}{10752} a^{17} + \frac{19}{1344} a^{15} - \frac{5}{10752} a^{13} - \frac{593}{10752} a^{11} - \frac{95}{2688} a^{9} - \frac{859}{10752} a^{7} - \frac{3659}{10752} a^{5} - \frac{73}{336} a^{3} - \frac{13}{84} a$, $\frac{1}{655872} a^{26} + \frac{17}{218624} a^{24} - \frac{233}{109312} a^{22} - \frac{3025}{655872} a^{20} - \frac{10015}{655872} a^{18} - \frac{1649}{109312} a^{16} + \frac{1209}{218624} a^{14} + \frac{52937}{655872} a^{12} + \frac{31363}{327936} a^{10} - \frac{4769}{218624} a^{8} - \frac{52919}{218624} a^{6} - \frac{155717}{327936} a^{4} - \frac{5699}{20496} a^{2} - \frac{580}{1281}$, $\frac{1}{655872} a^{27} - \frac{5}{327936} a^{25} - \frac{1703}{655872} a^{23} + \frac{4051}{655872} a^{21} - \frac{3757}{327936} a^{19} - \frac{847}{93696} a^{17} + \frac{4603}{655872} a^{15} + \frac{3803}{46848} a^{13} - \frac{65069}{655872} a^{11} + \frac{80609}{655872} a^{9} + \frac{4115}{46848} a^{7} - \frac{36029}{93696} a^{5} - \frac{5287}{11712} a^{3} - \frac{41}{854} a$, $\frac{1}{54386873856} a^{28} - \frac{27815}{54386873856} a^{26} + \frac{1941059}{27193436928} a^{24} - \frac{167378003}{54386873856} a^{22} + \frac{2687425}{415166976} a^{20} - \frac{75834175}{9064478976} a^{18} - \frac{130971923}{54386873856} a^{16} - \frac{1296262757}{54386873856} a^{14} - \frac{2989784603}{27193436928} a^{12} - \frac{2147286931}{18128957952} a^{10} + \frac{5658124081}{54386873856} a^{8} + \frac{7130205125}{27193436928} a^{6} - \frac{6532685501}{27193436928} a^{4} + \frac{29917429}{121399272} a^{2} + \frac{48202774}{106224363}$, $\frac{1}{108773747712} a^{29} + \frac{13777}{27193436928} a^{27} + \frac{381611}{13596718464} a^{25} - \frac{9643621}{3399179616} a^{23} - \frac{44117}{29654784} a^{21} + \frac{8631963}{1510746496} a^{19} + \frac{538483709}{54386873856} a^{17} - \frac{16193321}{27193436928} a^{15} + \frac{1079119501}{13596718464} a^{13} - \frac{68334943}{4532239488} a^{11} + \frac{748680061}{27193436928} a^{9} + \frac{42764549}{13596718464} a^{7} - \frac{52674288259}{108773747712} a^{5} - \frac{198174143}{971194176} a^{3} + \frac{86206019}{424897452} a$, $\frac{1}{6506126820124963695224072309939355648} a^{30} + \frac{9753137216880705999201005}{1626531705031240923806018077484838912} a^{28} + \frac{471336360198536808891399048851}{1626531705031240923806018077484838912} a^{26} + \frac{2065824279102734356068885106859}{1626531705031240923806018077484838912} a^{24} - \frac{1721485554153032878473090117404879}{542177235010413641268672692494946304} a^{22} + \frac{8404948550603261771155539789996305}{1626531705031240923806018077484838912} a^{20} + \frac{47592018071937345873390794091094559}{3253063410062481847612036154969677824} a^{18} + \frac{260160762501221583911954531351899}{56087300173491066338138554396028928} a^{16} - \frac{9712949063032292187494306635974589}{542177235010413641268672692494946304} a^{14} + \frac{104509647667071480967715924913617615}{1626531705031240923806018077484838912} a^{12} - \frac{166100020962798208782521291838054935}{1626531705031240923806018077484838912} a^{10} + \frac{69273028797567199611825203231099915}{1626531705031240923806018077484838912} a^{8} - \frac{266490862344460036585498976281631071}{722902980013884855024896923326595072} a^{6} - \frac{137602375738027351272530036077497}{2823839765679237714941003606744512} a^{4} + \frac{3627092064082103917066496962885}{34719341381302103052553323033744} a^{2} - \frac{1324851456588462007590819665515}{26039506035976577289414992275308}$, $\frac{1}{26024507280499854780896289239757422592} a^{31} - \frac{20153558824112662248237947}{6506126820124963695224072309939355648} a^{29} - \frac{3656714801035818803670846934661}{6506126820124963695224072309939355648} a^{27} - \frac{64436439626020496894294720019557}{6506126820124963695224072309939355648} a^{25} + \frac{20995265110246587409386374546375099}{6506126820124963695224072309939355648} a^{23} - \frac{7405454212997017224247683225490429}{2168708940041654565074690769979785216} a^{21} - \frac{155629815126742347534367230190882561}{13012253640249927390448144619878711296} a^{19} - \frac{362052358406135132840084141309467}{32049885813423466478936316797730816} a^{17} + \frac{37626757944826510799467626847284737}{6506126820124963695224072309939355648} a^{15} + \frac{81207901863553516415303600506965543}{722902980013884855024896923326595072} a^{13} + \frac{285754474746911948535578831200386529}{6506126820124963695224072309939355648} a^{11} + \frac{211851797066702988740070037466818099}{6506126820124963695224072309939355648} a^{9} + \frac{1462137784814798253989066519419196393}{26024507280499854780896289239757422592} a^{7} + \frac{12704899848361236116070521397128065}{25414557891113139434469032460700608} a^{5} + \frac{5296124878385051093317643607025807}{12707278945556569717234516230350304} a^{3} - \frac{745833851813222635186225362029941}{2117879824259428286205752705058384} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{1040}$, which has order $532480$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4791620338837015389013750471}{2365004296664835948827361799323648} a^{30} - \frac{14317883363616494339768282825}{197083691388736329068946816610304} a^{28} - \frac{322203471702339594203946772735}{197083691388736329068946816610304} a^{26} - \frac{4418697129918190957162194838535}{197083691388736329068946816610304} a^{24} - \frac{131898747342179263825974121757845}{591251074166208987206840449830912} a^{22} - \frac{931319638685040475484019827139199}{591251074166208987206840449830912} a^{20} - \frac{9900585199215569113964693362487945}{1182502148332417974413680899661824} a^{18} - \frac{217596585270549252908162499718255}{6795989358232287209274028158976} a^{16} - \frac{54124578016579579601763780342681895}{591251074166208987206840449830912} a^{14} - \frac{107430885942588686297196512144059105}{591251074166208987206840449830912} a^{12} - \frac{153272390491201448601163863163834831}{591251074166208987206840449830912} a^{10} - \frac{43901839177011233642394919422124535}{197083691388736329068946816610304} a^{8} - \frac{330267147442790631823960090469689855}{2365004296664835948827361799323648} a^{6} - \frac{1854036779779793105866025637538685}{36953192135388061700427528114432} a^{4} - \frac{32905218490535578561718943088885}{2309574508461753856276720507152} a^{2} - \frac{255340307060119734811613829103}{577393627115438464069180126788} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9245193308827.074 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||