Normalized defining polynomial
\( x^{32} + 77 x^{30} + 2550 x^{28} + 47810 x^{26} + 563517 x^{24} + 4400894 x^{22} + 23500815 x^{20} + 87672250 x^{18} + 231662344 x^{16} + 436175237 x^{14} + 583652697 x^{12} + 547864098 x^{10} + 350875173 x^{8} + 145473897 x^{6} + 35183233 x^{4} + 3838047 x^{2} + 32041 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(259,·)$, $\chi_{780}(391,·)$, $\chi_{780}(649,·)$, $\chi_{780}(281,·)$, $\chi_{780}(623,·)$, $\chi_{780}(287,·)$, $\chi_{780}(161,·)$, $\chi_{780}(677,·)$, $\chi_{780}(551,·)$, $\chi_{780}(307,·)$, $\chi_{780}(53,·)$, $\chi_{780}(697,·)$, $\chi_{780}(571,·)$, $\chi_{780}(671,·)$, $\chi_{780}(181,·)$, $\chi_{780}(577,·)$, $\chi_{780}(73,·)$, $\chi_{780}(77,·)$, $\chi_{780}(79,·)$, $\chi_{780}(467,·)$, $\chi_{780}(469,·)$, $\chi_{780}(343,·)$, $\chi_{780}(463,·)$, $\chi_{780}(733,·)$, $\chi_{780}(187,·)$, $\chi_{780}(359,·)$, $\chi_{780}(233,·)$, $\chi_{780}(749,·)$, $\chi_{780}(239,·)$, $\chi_{780}(629,·)$, $\chi_{780}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{4} a^{20} - \frac{1}{2} a^{18} + \frac{1}{4} a^{16} - \frac{1}{2} a^{14} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{21} - \frac{1}{2} a^{19} + \frac{1}{4} a^{17} - \frac{1}{2} a^{15} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{22} + \frac{1}{4} a^{18} + \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{23} + \frac{1}{4} a^{19} + \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{24} + \frac{1}{12} a^{20} - \frac{1}{3} a^{18} - \frac{1}{3} a^{16} + \frac{5}{12} a^{14} + \frac{1}{12} a^{12} - \frac{1}{2} a^{10} - \frac{5}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{25} + \frac{1}{12} a^{21} - \frac{1}{3} a^{19} - \frac{1}{3} a^{17} + \frac{5}{12} a^{15} + \frac{1}{12} a^{13} - \frac{1}{2} a^{11} - \frac{5}{12} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{6} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{26} + \frac{1}{12} a^{22} - \frac{1}{12} a^{20} + \frac{1}{6} a^{18} - \frac{1}{3} a^{16} - \frac{5}{12} a^{14} - \frac{1}{2} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{12} a^{4} + \frac{1}{12} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{27} + \frac{1}{12} a^{23} - \frac{1}{12} a^{21} + \frac{1}{6} a^{19} - \frac{1}{3} a^{17} - \frac{5}{12} a^{15} - \frac{1}{2} a^{13} - \frac{1}{6} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{12} a^{5} + \frac{1}{12} a^{3} + \frac{1}{4} a$, $\frac{1}{1249524} a^{28} - \frac{10427}{1249524} a^{26} + \frac{1005}{138836} a^{24} - \frac{2491}{138836} a^{22} + \frac{13801}{416508} a^{20} - \frac{90673}{1249524} a^{18} - \frac{268499}{1249524} a^{16} - \frac{1135}{1249524} a^{14} - \frac{166537}{416508} a^{12} - \frac{465665}{1249524} a^{10} - \frac{222667}{1249524} a^{8} - \frac{115207}{1249524} a^{6} + \frac{65417}{416508} a^{4} + \frac{185}{20484} a^{2} + \frac{185927}{1249524}$, $\frac{1}{223664796} a^{29} - \frac{497210}{55916199} a^{27} - \frac{1334789}{37277466} a^{25} - \frac{1812341}{74554932} a^{23} + \frac{2181440}{18638733} a^{21} - \frac{13064575}{55916199} a^{19} - \frac{21387128}{55916199} a^{17} - \frac{58312255}{223664796} a^{15} - \frac{20020085}{74554932} a^{13} - \frac{89598377}{223664796} a^{11} + \frac{32681465}{223664796} a^{9} - \frac{31139513}{111832398} a^{7} - \frac{28326545}{74554932} a^{5} - \frac{516275}{1833318} a^{3} + \frac{92442449}{223664796} a$, $\frac{1}{13179018864655803434977632782495484} a^{30} - \frac{734068686988528808461912085}{4393006288218601144992544260831828} a^{28} - \frac{494501597501919978936780730436833}{13179018864655803434977632782495484} a^{26} - \frac{45492882883737085313813569372799}{1464335429406200381664181420277276} a^{24} - \frac{105272212107121148577212771564173}{4393006288218601144992544260831828} a^{22} - \frac{25465064036498768436548395413037}{13179018864655803434977632782495484} a^{20} + \frac{1204734676212073857255877332466553}{13179018864655803434977632782495484} a^{18} - \frac{6124571936170867908366656046542129}{13179018864655803434977632782495484} a^{16} - \frac{1755014279729730323062842040882013}{13179018864655803434977632782495484} a^{14} + \frac{4406479423704200382252348768093547}{13179018864655803434977632782495484} a^{12} - \frac{3496456389611442882873877895417}{21928483967813316863523515445084} a^{10} + \frac{159286756166919150198880563299295}{1464335429406200381664181420277276} a^{8} + \frac{6123808992447710384745170251830325}{13179018864655803434977632782495484} a^{6} + \frac{3940482102857693453072943273794237}{13179018864655803434977632782495484} a^{4} - \frac{19938402811371735564618062669673}{1464335429406200381664181420277276} a^{2} - \frac{651648152977575530783415882715}{18406450928290228261141945226949}$, $\frac{1}{13179018864655803434977632782495484} a^{31} - \frac{11026034207830193715638441}{6589509432327901717488816391247742} a^{29} - \frac{437472775826313735269583449002325}{13179018864655803434977632782495484} a^{27} - \frac{33076022049952060611701590354629}{1464335429406200381664181420277276} a^{25} - \frac{32968008800295474997431839616098}{366083857351550095416045355069319} a^{23} + \frac{258551566818416126933255633656649}{3294754716163950858744408195623871} a^{21} - \frac{967083169064899129055346799594549}{4393006288218601144992544260831828} a^{19} + \frac{512502717684631303790537385957926}{1098251572054650286248136065207957} a^{17} - \frac{1842015309169492523557721976345515}{6589509432327901717488816391247742} a^{15} + \frac{1529780097168138044423948066556179}{6589509432327901717488816391247742} a^{13} - \frac{969791925149961462367045468107}{2436498218645924095947057271676} a^{11} + \frac{1297855024080672307658416423797895}{13179018864655803434977632782495484} a^{9} - \frac{4453378979342806998810080421473275}{13179018864655803434977632782495484} a^{7} - \frac{7925668413056317123626106094189}{23161720324526895316305154275036} a^{5} + \frac{2088404432147273673022745643369623}{6589509432327901717488816391247742} a^{3} + \frac{2242581396564286199459946733438117}{6589509432327901717488816391247742} a$
Class group and class number
$C_{8}\times C_{8}\times C_{8}\times C_{8}\times C_{80}$, which has order $327680$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{43682034905041405}{22711506177545765478} a^{31} + \frac{3317158735559980025}{22711506177545765478} a^{29} + \frac{107871984959297161915}{22711506177545765478} a^{27} + \frac{658064464017861030793}{7570502059181921826} a^{25} + \frac{7509301460755185712015}{7570502059181921826} a^{23} + \frac{168464247274183885950875}{22711506177545765478} a^{21} + \frac{283074301643995409285335}{7570502059181921826} a^{19} + \frac{979548617429338639682375}{7570502059181921826} a^{17} + \frac{7048471641891929638503323}{22711506177545765478} a^{15} + \frac{11722851654904466996253865}{22711506177545765478} a^{13} + \frac{1486089326830235390300405}{2523500686393973942} a^{11} + \frac{10200541994189800948268935}{22711506177545765478} a^{9} + \frac{4944073271473062848767115}{22711506177545765478} a^{7} + \frac{1375506047999436399034841}{22711506177545765478} a^{5} + \frac{170411637446790306201145}{22711506177545765478} a^{3} + \frac{837659191729676649625}{11355753088772882739} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1189280875603.7385 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||