Normalized defining polynomial
\( x^{32} - 23 x^{30} + 420 x^{28} - 7300 x^{26} + 125492 x^{24} - 672841 x^{22} + 2866035 x^{20} - 10960760 x^{18} + 37477864 x^{16} - 82519608 x^{14} + 169153947 x^{12} - 306502677 x^{10} + 404862948 x^{8} - 26009748 x^{6} + 1670868 x^{4} - 107163 x^{2} + 6561 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(259,·)$, $\chi_{780}(391,·)$, $\chi_{780}(649,·)$, $\chi_{780}(493,·)$, $\chi_{780}(281,·)$, $\chi_{780}(103,·)$, $\chi_{780}(157,·)$, $\chi_{780}(671,·)$, $\chi_{780}(161,·)$, $\chi_{780}(547,·)$, $\chi_{780}(551,·)$, $\chi_{780}(47,·)$, $\chi_{780}(437,·)$, $\chi_{780}(313,·)$, $\chi_{780}(571,·)$, $\chi_{780}(317,·)$, $\chi_{780}(181,·)$, $\chi_{780}(707,·)$, $\chi_{780}(203,·)$, $\chi_{780}(79,·)$, $\chi_{780}(337,·)$, $\chi_{780}(83,·)$, $\chi_{780}(469,·)$, $\chi_{780}(727,·)$, $\chi_{780}(473,·)$, $\chi_{780}(593,·)$, $\chi_{780}(359,·)$, $\chi_{780}(749,·)$, $\chi_{780}(239,·)$, $\chi_{780}(629,·)$, $\chi_{780}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} + \frac{1}{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{6}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{7}$, $\frac{1}{12} a^{18} + \frac{1}{12} a^{16} - \frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{5}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{4} - \frac{5}{12} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{19} + \frac{1}{12} a^{17} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} + \frac{5}{12} a^{9} - \frac{1}{4} a^{7} + \frac{1}{3} a^{5} - \frac{5}{12} a^{3} + \frac{1}{4} a$, $\frac{1}{144} a^{20} + \frac{1}{36} a^{18} - \frac{1}{12} a^{16} + \frac{1}{18} a^{14} - \frac{1}{36} a^{12} - \frac{5}{72} a^{10} - \frac{5}{12} a^{8} + \frac{13}{36} a^{6} - \frac{1}{18} a^{4} + \frac{5}{12} a^{2} - \frac{3}{16}$, $\frac{1}{144} a^{21} + \frac{1}{36} a^{19} - \frac{1}{12} a^{17} + \frac{1}{18} a^{15} - \frac{1}{36} a^{13} - \frac{5}{72} a^{11} - \frac{5}{12} a^{9} + \frac{13}{36} a^{7} - \frac{1}{18} a^{5} + \frac{5}{12} a^{3} - \frac{3}{16} a$, $\frac{1}{432} a^{22} + \frac{1}{432} a^{20} + \frac{1}{36} a^{18} + \frac{1}{54} a^{16} - \frac{7}{108} a^{14} + \frac{1}{216} a^{12} + \frac{1}{72} a^{10} - \frac{5}{108} a^{8} + \frac{11}{54} a^{6} - \frac{17}{36} a^{4} - \frac{7}{48} a^{2} - \frac{1}{16}$, $\frac{1}{432} a^{23} + \frac{1}{432} a^{21} + \frac{1}{36} a^{19} + \frac{1}{54} a^{17} - \frac{7}{108} a^{15} + \frac{1}{216} a^{13} + \frac{1}{72} a^{11} - \frac{5}{108} a^{9} + \frac{11}{54} a^{7} - \frac{17}{36} a^{5} - \frac{7}{48} a^{3} - \frac{1}{16} a$, $\frac{1}{79056} a^{24} - \frac{2}{4941} a^{22} + \frac{13}{13176} a^{20} - \frac{25}{19764} a^{18} - \frac{403}{4941} a^{16} + \frac{751}{39528} a^{14} + \frac{403}{6588} a^{12} - \frac{1463}{19764} a^{10} + \frac{3643}{19764} a^{8} + \frac{479}{1647} a^{6} - \frac{1435}{8784} a^{4} - \frac{329}{732} a^{2} - \frac{93}{488}$, $\frac{1}{237168} a^{25} - \frac{215}{237168} a^{23} - \frac{35}{79056} a^{21} - \frac{2221}{59292} a^{19} + \frac{6257}{59292} a^{17} + \frac{3313}{118584} a^{15} + \frac{1843}{39528} a^{13} - \frac{10063}{118584} a^{11} + \frac{16087}{59292} a^{9} + \frac{5515}{19764} a^{7} - \frac{215}{26352} a^{5} - \frac{2597}{8784} a^{3} + \frac{1339}{2928} a$, $\frac{1}{1161968663849456701872} a^{26} + \frac{92743903282721}{145246082981182087734} a^{24} - \frac{15586835315202901}{24207680496863681289} a^{22} + \frac{988539839745682319}{1161968663849456701872} a^{20} + \frac{2572369557750760553}{290492165962364175468} a^{18} + \frac{22921593476517147973}{580984331924728350936} a^{16} - \frac{5978577496395308153}{96830721987454725156} a^{14} - \frac{57619815091020725}{1190541663780181047} a^{12} + \frac{11245837616308580657}{580984331924728350936} a^{10} - \frac{27313329213376279945}{96830721987454725156} a^{8} - \frac{8091259118777296351}{129107629316606300208} a^{6} - \frac{1598764867983112705}{3586323036572397228} a^{4} - \frac{414463055599336216}{896580759143099307} a^{2} + \frac{1807037988250598881}{4781764048763196304}$, $\frac{1}{3485905991548370105616} a^{27} + \frac{92743903282721}{435738248943546263202} a^{25} - \frac{15586835315202901}{72623041490591043867} a^{23} - \frac{1770171748135552861}{871476497887092526404} a^{21} - \frac{29704537771400814499}{871476497887092526404} a^{19} - \frac{122324489504664939761}{1742952995774185052808} a^{17} - \frac{8891435637029396321}{72623041490591043867} a^{15} - \frac{891891295797516815}{14286499965362172564} a^{13} + \frac{50003666385737706025}{871476497887092526404} a^{11} - \frac{27313329213376279945}{290492165962364175468} a^{9} - \frac{54713458594218460315}{387322887949818900624} a^{7} - \frac{5237319705927816863}{16138453664575787526} a^{5} + \frac{4618213091604350285}{10758969109717191684} a^{3} + \frac{786242722995761927}{1793161518286198614} a$, $\frac{1}{3485905991548370105616} a^{28} + \frac{1}{3485905991548370105616} a^{26} - \frac{1203242655334945}{580984331924728350936} a^{24} + \frac{2168773165652904251}{3485905991548370105616} a^{22} - \frac{679501119700381321}{3485905991548370105616} a^{20} + \frac{30285753547147977277}{1742952995774185052808} a^{18} + \frac{49287908876716116889}{580984331924728350936} a^{16} + \frac{76891893677574217753}{871476497887092526404} a^{14} + \frac{149474644808120018693}{1742952995774185052808} a^{12} - \frac{13036607772515479399}{580984331924728350936} a^{10} - \frac{7291598920040375663}{387322887949818900624} a^{8} + \frac{44245981633543435519}{129107629316606300208} a^{6} + \frac{329824439257926215}{7172646073144794456} a^{4} - \frac{1721505579382127291}{14345292146289588912} a^{2} + \frac{1849302919121146199}{4781764048763196304}$, $\frac{1}{10457717974645110316848} a^{29} + \frac{1}{10457717974645110316848} a^{27} - \frac{1203242655334945}{1742952995774185052808} a^{25} + \frac{2168773165652904251}{10457717974645110316848} a^{23} + \frac{1470511211072706248}{653607373415319394803} a^{21} + \frac{78701114540875339855}{5228858987322555158424} a^{19} + \frac{146118630864170842045}{1742952995774185052808} a^{17} - \frac{46280934900235775635}{1307214746830638789606} a^{15} - \frac{334678965129153607087}{5228858987322555158424} a^{13} - \frac{26691370966977474107}{871476497887092526404} a^{11} + \frac{218646752384020649701}{1161968663849456701872} a^{9} - \frac{5962540878470125673}{387322887949818900624} a^{7} + \frac{15932485970158767095}{64553814658303150104} a^{5} - \frac{1519546189032235339}{4781764048763196304} a^{3} + \frac{477873850728436933}{1195441012190799076} a$, $\frac{1}{41830871898580441267392} a^{30} + \frac{1}{10457717974645110316848} a^{28} - \frac{1}{3485905991548370105616} a^{26} + \frac{2401103703331429}{1307214746830638789606} a^{24} - \frac{1158713903525396167}{10457717974645110316848} a^{22} - \frac{57233623161081512413}{41830871898580441267392} a^{20} + \frac{45781540626187594787}{1742952995774185052808} a^{18} + \frac{569286111768105935945}{5228858987322555158424} a^{16} + \frac{58318589582285784095}{1307214746830638789606} a^{14} + \frac{103836777462534818419}{1742952995774185052808} a^{12} - \frac{114936835224297127415}{1549291551799275602496} a^{10} - \frac{15781139678915014709}{43035876438868766736} a^{8} + \frac{52324478796279651349}{129107629316606300208} a^{6} - \frac{36241552349556679}{92749733704458549} a^{4} + \frac{6320154977465760689}{14345292146289588912} a^{2} + \frac{356095852479750035}{19127056195052785216}$, $\frac{1}{125492615695741323802176} a^{31} + \frac{1}{31373153923935330950544} a^{29} - \frac{1}{10457717974645110316848} a^{27} + \frac{2401103703331429}{3921644240491916368818} a^{25} - \frac{1585399650024317341}{1960822120245958184409} a^{23} + \frac{426919986776192113367}{125492615695741323802176} a^{21} + \frac{94196901619914957365}{5228858987322555158424} a^{19} - \frac{399021108106441315615}{15686576961967665475272} a^{17} - \frac{730631638225657276925}{7843288480983832737636} a^{15} + \frac{217337538793169231351}{2614429493661277579212} a^{13} + \frac{423011620261562456785}{4647874655397826807488} a^{11} - \frac{19848275756356665379}{387322887949818900624} a^{9} + \frac{39756391826321466535}{129107629316606300208} a^{7} + \frac{174505095583797175}{1112996804453502588} a^{5} - \frac{1184418596324782691}{10758969109717191684} a^{3} + \frac{7689825028034977493}{19127056195052785216} a$
Class group and class number
$C_{2}\times C_{8}\times C_{8}\times C_{208}$, which has order $26624$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4847999581601825359}{125492615695741323802176} a^{31} - \frac{13937999304009886927}{15686576961967665475272} a^{29} + \frac{169679985356063887565}{10457717974645110316848} a^{27} - \frac{8847599236423331280175}{31373153923935330950544} a^{25} + \frac{152096290873594066987907}{31373153923935330950544} a^{23} - \frac{3261932886484553776374919}{125492615695741323802176} a^{21} + \frac{144734692519207470147863}{1307214746830638789606} a^{19} - \frac{6642219986754752915239105}{15686576961967665475272} a^{17} + \frac{22711583623916264119544147}{15686576961967665475272} a^{15} - \frac{16668959377414443362880803}{5228858987322555158424} a^{13} + \frac{30372528306751753402945999}{4647874655397826807488} a^{11} - \frac{6879296644852159814050031}{580984331924728350936} a^{9} + \frac{6057948773179264126623143}{387322887949818900624} a^{7} - \frac{129727620804083244781481}{129107629316606300208} a^{5} + \frac{925967920085948643569}{14345292146289588912} a^{3} - \frac{237551979498489442591}{57381168585158355648} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95287215485273.48 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||