Normalized defining polynomial
\( x^{32} - 13 x^{30} + 13 x^{28} + 1690 x^{26} - 21970 x^{24} + 261443 x^{22} - 259246 x^{20} - 33987590 x^{18} + 441810109 x^{16} - 441838670 x^{14} - 43812574 x^{12} + 574390271 x^{10} - 627485170 x^{8} + 627485170 x^{6} + 62748517 x^{4} - 815730721 x^{2} + 815730721 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(619,·)$, $\chi_{780}(389,·)$, $\chi_{780}(649,·)$, $\chi_{780}(151,·)$, $\chi_{780}(157,·)$, $\chi_{780}(671,·)$, $\chi_{780}(677,·)$, $\chi_{780}(551,·)$, $\chi_{780}(47,·)$, $\chi_{780}(307,·)$, $\chi_{780}(181,·)$, $\chi_{780}(521,·)$, $\chi_{780}(313,·)$, $\chi_{780}(31,·)$, $\chi_{780}(701,·)$, $\chi_{780}(53,·)$, $\chi_{780}(707,·)$, $\chi_{780}(203,·)$, $\chi_{780}(77,·)$, $\chi_{780}(463,·)$, $\chi_{780}(337,·)$, $\chi_{780}(83,·)$, $\chi_{780}(469,·)$, $\chi_{780}(343,·)$, $\chi_{780}(187,·)$, $\chi_{780}(209,·)$, $\chi_{780}(233,·)$, $\chi_{780}(359,·)$, $\chi_{780}(493,·)$, $\chi_{780}(239,·)$, $\chi_{780}(499,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{169} a^{8}$, $\frac{1}{169} a^{9}$, $\frac{1}{169} a^{10}$, $\frac{1}{169} a^{11}$, $\frac{1}{2197} a^{12}$, $\frac{1}{2197} a^{13}$, $\frac{1}{2197} a^{14}$, $\frac{1}{2197} a^{15}$, $\frac{1}{85683} a^{16} + \frac{1}{6591} a^{14} - \frac{1}{507} a^{10} - \frac{1}{507} a^{8} - \frac{1}{39} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{85683} a^{17} + \frac{1}{6591} a^{15} - \frac{1}{507} a^{11} - \frac{1}{507} a^{9} - \frac{1}{39} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{85683} a^{18} - \frac{1}{6591} a^{14} - \frac{1}{6591} a^{12} + \frac{1}{39} a^{6} + \frac{1}{39} a^{4} - \frac{1}{3}$, $\frac{1}{85683} a^{19} - \frac{1}{6591} a^{15} - \frac{1}{6591} a^{13} + \frac{1}{39} a^{7} + \frac{1}{39} a^{5} - \frac{1}{3} a$, $\frac{1}{145918149} a^{20} - \frac{142}{66417} a^{10} + \frac{1}{393}$, $\frac{1}{145918149} a^{21} - \frac{142}{66417} a^{11} + \frac{1}{393} a$, $\frac{1}{145918149} a^{22} + \frac{119}{863421} a^{12} + \frac{1}{393} a^{2}$, $\frac{1}{145918149} a^{23} + \frac{119}{863421} a^{13} + \frac{1}{393} a^{3}$, $\frac{1}{22763231244} a^{24} + \frac{1}{1028196} a^{18} + \frac{47}{287807} a^{14} + \frac{11}{79092} a^{12} + \frac{1}{468} a^{6} - \frac{40}{1703} a^{4} + \frac{11}{36}$, $\frac{1}{22763231244} a^{25} + \frac{1}{1028196} a^{19} + \frac{47}{287807} a^{15} + \frac{11}{79092} a^{13} + \frac{1}{468} a^{7} - \frac{40}{1703} a^{5} + \frac{11}{36} a$, $\frac{1}{292985549341524} a^{26} - \frac{25}{5634337487337} a^{24} + \frac{1180}{1878112495779} a^{22} - \frac{14041}{22537349949348} a^{20} - \frac{295}{3308477679} a^{18} + \frac{11800}{11113091691} a^{16} - \frac{140411}{133357100292} a^{14} - \frac{295}{2564559621} a^{12} - \frac{608837}{284951069} a^{10} - \frac{140411}{78307164} a^{8} + \frac{295}{197273817} a^{6} + \frac{140411}{65757939} a^{4} - \frac{119}{60699636} a^{2} - \frac{421171}{15174909}$, $\frac{1}{292985549341524} a^{27} - \frac{25}{5634337487337} a^{25} + \frac{1180}{1878112495779} a^{23} - \frac{14041}{22537349949348} a^{21} - \frac{295}{3308477679} a^{19} + \frac{11800}{11113091691} a^{17} - \frac{140411}{133357100292} a^{15} - \frac{295}{2564559621} a^{13} - \frac{608837}{284951069} a^{11} - \frac{140411}{78307164} a^{9} + \frac{295}{197273817} a^{7} + \frac{140411}{65757939} a^{5} - \frac{119}{60699636} a^{3} - \frac{421171}{15174909} a$, $\frac{1}{3808812141439812} a^{28} - \frac{1}{292985549341524} a^{24} + \frac{12971}{22537349949348} a^{22} - \frac{1180}{1878112495779} a^{20} - \frac{141491}{1733642303796} a^{18} + \frac{14051}{13233910716} a^{16} - \frac{11800}{11113091691} a^{14} - \frac{14041}{133357100292} a^{12} - \frac{21918133}{10258238484} a^{10} - \frac{510940}{284951069} a^{8} - \frac{167413}{6023628} a^{6} + \frac{1684921}{789095268} a^{4} - \frac{128620}{5058303} a^{2} + \frac{119}{60699636}$, $\frac{1}{3808812141439812} a^{29} - \frac{1}{292985549341524} a^{25} + \frac{12971}{22537349949348} a^{23} - \frac{1180}{1878112495779} a^{21} - \frac{141491}{1733642303796} a^{19} + \frac{14051}{13233910716} a^{17} - \frac{11800}{11113091691} a^{15} - \frac{14041}{133357100292} a^{13} - \frac{21918133}{10258238484} a^{11} - \frac{510940}{284951069} a^{9} - \frac{167413}{6023628} a^{7} + \frac{1684921}{789095268} a^{5} - \frac{128620}{5058303} a^{3} + \frac{119}{60699636} a$, $\frac{1}{3808812141439812} a^{30} - \frac{18378371}{60699636}$, $\frac{1}{3808812141439812} a^{31} - \frac{18378371}{60699636} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{142681}{97661849780508} a^{30} + \frac{142681}{8138487481709} a^{28} + \frac{1309}{97661849780508} a^{26} - \frac{142681}{57346946436} a^{24} + \frac{1426810}{48156730661} a^{22} - \frac{15552229}{44452366764} a^{20} - \frac{142681}{44452366764} a^{18} + \frac{2409608499}{48156730661} a^{16} - \frac{15552229}{26102388} a^{14} + \frac{142681}{3419412828} a^{12} + \frac{15552229}{21919313} a^{10} - \frac{203891149}{263031756} a^{8} + \frac{222581051}{263031756} a^{6} - \frac{20403383}{20233212} a^{2} + \frac{1854853}{1686101} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||