Normalized defining polynomial
\(x^{32} - x^{30} + x^{28} - 8 x^{26} + 20 x^{24} - 16 x^{22} + 32 x^{20} - 128 x^{18} + 64 x^{16} - 512 x^{14} + 512 x^{12} - 1024 x^{10} + 5120 x^{8} - 8192 x^{6} + 4096 x^{4} - 16384 x^{2} + 65536\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(59647719207059933350876409342295283657151229198336\)\(\medspace = 2^{44}\cdot 3^{16}\cdot 4093^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $35.93$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 4093$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{10} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} + \frac{1}{32} a^{11} - \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{192} a^{16} + \frac{1}{192} a^{14} + \frac{1}{64} a^{12} - \frac{5}{96} a^{10} + \frac{1}{24} a^{8} - \frac{5}{24} a^{6} + \frac{1}{4} a^{4} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{384} a^{17} + \frac{1}{384} a^{15} + \frac{1}{128} a^{13} - \frac{5}{192} a^{11} - \frac{5}{48} a^{9} + \frac{1}{48} a^{7} + \frac{5}{12} a^{3} + \frac{1}{6} a$, $\frac{1}{768} a^{18} + \frac{1}{768} a^{16} + \frac{1}{256} a^{14} - \frac{5}{384} a^{12} - \frac{1}{16} a^{11} - \frac{5}{96} a^{10} - \frac{1}{16} a^{9} + \frac{1}{96} a^{8} - \frac{3}{16} a^{7} - \frac{3}{8} a^{5} - \frac{7}{24} a^{4} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{768} a^{19} - \frac{1}{768} a^{17} + \frac{1}{768} a^{15} - \frac{1}{48} a^{13} - \frac{5}{192} a^{11} + \frac{11}{96} a^{9} - \frac{1}{48} a^{7} - \frac{7}{24} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{1536} a^{20} - \frac{1}{1536} a^{18} + \frac{1}{1536} a^{16} - \frac{1}{96} a^{14} - \frac{1}{32} a^{13} - \frac{5}{384} a^{12} + \frac{1}{32} a^{11} + \frac{11}{192} a^{10} - \frac{1}{32} a^{9} - \frac{1}{96} a^{8} - \frac{7}{48} a^{6} + \frac{1}{8} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{1536} a^{21} - \frac{1}{1536} a^{19} + \frac{1}{1536} a^{17} - \frac{1}{96} a^{15} - \frac{5}{384} a^{13} + \frac{11}{192} a^{11} - \frac{1}{96} a^{9} - \frac{7}{48} a^{7} + \frac{1}{12} a^{5} - \frac{1}{12} a^{3}$, $\frac{1}{3072} a^{22} - \frac{1}{3072} a^{20} + \frac{1}{3072} a^{18} - \frac{1}{64} a^{15} - \frac{1}{768} a^{14} + \frac{1}{64} a^{13} - \frac{7}{384} a^{12} - \frac{1}{64} a^{11} + \frac{1}{192} a^{10} - \frac{3}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{6} a^{6} + \frac{3}{8} a^{5} + \frac{11}{24} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3072} a^{23} - \frac{1}{3072} a^{21} + \frac{1}{3072} a^{19} - \frac{1}{768} a^{15} - \frac{7}{384} a^{13} + \frac{1}{192} a^{11} - \frac{3}{32} a^{9} - \frac{1}{6} a^{7} + \frac{11}{24} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6144} a^{24} - \frac{1}{6144} a^{22} + \frac{1}{6144} a^{20} - \frac{1}{1536} a^{16} - \frac{1}{64} a^{15} - \frac{7}{768} a^{14} - \frac{1}{64} a^{13} + \frac{1}{384} a^{12} - \frac{3}{64} a^{11} - \frac{3}{64} a^{10} - \frac{3}{32} a^{9} - \frac{1}{12} a^{8} + \frac{1}{8} a^{7} + \frac{11}{48} a^{6} + \frac{3}{8} a^{5} - \frac{1}{3} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6144} a^{25} - \frac{1}{6144} a^{23} + \frac{1}{6144} a^{21} - \frac{1}{1536} a^{17} - \frac{7}{768} a^{15} + \frac{1}{384} a^{13} - \frac{3}{64} a^{11} - \frac{1}{12} a^{9} + \frac{11}{48} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{12288} a^{26} - \frac{1}{12288} a^{24} + \frac{1}{12288} a^{22} - \frac{1}{3072} a^{18} + \frac{1}{1536} a^{16} + \frac{5}{768} a^{14} - \frac{1}{128} a^{12} + \frac{1}{32} a^{10} - \frac{1}{8} a^{9} + \frac{1}{32} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{12288} a^{27} - \frac{1}{12288} a^{25} + \frac{1}{12288} a^{23} - \frac{1}{3072} a^{19} + \frac{1}{1536} a^{17} + \frac{5}{768} a^{15} - \frac{1}{128} a^{13} + \frac{1}{32} a^{11} + \frac{1}{32} a^{9} - \frac{1}{4} a^{7} - \frac{5}{12} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{24576} a^{28} - \frac{1}{24576} a^{26} + \frac{1}{24576} a^{24} - \frac{1}{6144} a^{20} + \frac{1}{3072} a^{18} - \frac{1}{512} a^{16} - \frac{7}{768} a^{14} - \frac{1}{16} a^{11} - \frac{11}{192} a^{10} + \frac{1}{16} a^{9} - \frac{1}{24} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{24576} a^{29} - \frac{1}{24576} a^{27} + \frac{1}{24576} a^{25} - \frac{1}{6144} a^{21} + \frac{1}{3072} a^{19} + \frac{1}{1536} a^{17} - \frac{5}{768} a^{15} + \frac{1}{128} a^{13} + \frac{1}{24} a^{11} - \frac{1}{48} a^{9} - \frac{11}{48} a^{7} + \frac{1}{6} a^{5} + \frac{1}{4} a^{3} - \frac{1}{6} a$, $\frac{1}{344064} a^{30} - \frac{1}{114688} a^{28} + \frac{1}{49152} a^{26} - \frac{11}{172032} a^{24} - \frac{1}{7168} a^{22} - \frac{1}{10752} a^{20} + \frac{13}{21504} a^{18} + \frac{1}{2688} a^{16} + \frac{3}{896} a^{14} + \frac{55}{2688} a^{12} - \frac{1}{16} a^{11} - \frac{23}{672} a^{10} - \frac{1}{16} a^{9} + \frac{5}{112} a^{8} - \frac{3}{16} a^{7} - \frac{67}{336} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{5}{28} a^{2} - \frac{5}{21}$, $\frac{1}{688128} a^{31} + \frac{11}{688128} a^{29} + \frac{1}{32768} a^{27} + \frac{5}{172032} a^{25} + \frac{3}{57344} a^{23} + \frac{5}{43008} a^{21} - \frac{11}{21504} a^{19} - \frac{1}{896} a^{17} + \frac{13}{3584} a^{15} + \frac{19}{1344} a^{13} + \frac{17}{336} a^{11} - \frac{19}{168} a^{9} + \frac{115}{672} a^{7} - \frac{1}{8} a^{5} + \frac{19}{56} a^{3} - \frac{19}{42} a$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{5}{229376} a^{31} + \frac{31}{688128} a^{29} - \frac{1}{98304} a^{27} + \frac{11}{43008} a^{25} - \frac{37}{172032} a^{23} - \frac{5}{43008} a^{21} - \frac{1}{896} a^{19} + \frac{5}{10752} a^{17} - \frac{11}{10752} a^{15} + \frac{3}{448} a^{13} - \frac{19}{1344} a^{11} - \frac{5}{224} a^{9} - \frac{115}{672} a^{7} + \frac{1}{8} a^{5} + \frac{9}{56} a^{3} + \frac{19}{42} a \) (order $12$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 658375568497.8936 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 768 |
The 52 conjugacy class representatives for t32n34907 are not computed |
Character table for t32n34907 is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
4093 | Data not computed |