Normalized defining polynomial
\( x^{32} - 2 x^{31} + 23 x^{30} - 58 x^{29} + 423 x^{28} - 250 x^{27} + 5494 x^{26} - 2162 x^{25} + 75954 x^{24} - 68274 x^{23} + 419597 x^{22} - 421674 x^{21} + 1817292 x^{20} - 1250168 x^{19} + 6110462 x^{18} - 3815316 x^{17} + 18328695 x^{16} - 12077360 x^{15} + 38788398 x^{14} - 20336812 x^{13} + 67449232 x^{12} - 4658378 x^{11} + 73270895 x^{10} + 4506654 x^{9} + 68825998 x^{8} + 16469642 x^{7} + 66179698 x^{6} + 21666686 x^{5} + 47580595 x^{4} + 23875530 x^{3} + 17135213 x^{2} + 5606442 x + 4879681 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5695003679558247880375471569828315136000000000000000000000000=2^{48}\cdot 5^{24}\cdot 17^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(137,·)$, $\chi_{680}(13,·)$, $\chi_{680}(557,·)$, $\chi_{680}(273,·)$, $\chi_{680}(149,·)$, $\chi_{680}(89,·)$, $\chi_{680}(409,·)$, $\chi_{680}(157,·)$, $\chi_{680}(33,·)$, $\chi_{680}(421,·)$, $\chi_{680}(169,·)$, $\chi_{680}(429,·)$, $\chi_{680}(441,·)$, $\chi_{680}(577,·)$, $\chi_{680}(69,·)$, $\chi_{680}(81,·)$, $\chi_{680}(341,·)$, $\chi_{680}(217,·)$, $\chi_{680}(101,·)$, $\chi_{680}(477,·)$, $\chi_{680}(293,·)$, $\chi_{680}(353,·)$, $\chi_{680}(613,·)$, $\chi_{680}(361,·)$, $\chi_{680}(237,·)$, $\chi_{680}(497,·)$, $\chi_{680}(373,·)$, $\chi_{680}(489,·)$, $\chi_{680}(633,·)$, $\chi_{680}(509,·)$, $\chi_{680}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{4} a^{24} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{4} a^{18} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{25} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{4} a^{19} + \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a$, $\frac{1}{12} a^{26} - \frac{1}{12} a^{25} + \frac{1}{12} a^{24} - \frac{1}{3} a^{23} - \frac{1}{3} a^{22} - \frac{1}{6} a^{21} + \frac{1}{4} a^{20} + \frac{5}{12} a^{19} - \frac{1}{4} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{12} a^{14} + \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{12}$, $\frac{1}{12} a^{27} + \frac{1}{3} a^{23} - \frac{5}{12} a^{21} - \frac{1}{3} a^{20} + \frac{1}{6} a^{19} - \frac{1}{6} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{4} a^{15} + \frac{1}{3} a^{14} - \frac{1}{6} a^{12} + \frac{1}{3} a^{11} + \frac{1}{4} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{5}{12} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{15924} a^{28} - \frac{601}{15924} a^{27} - \frac{53}{7962} a^{26} - \frac{473}{3981} a^{25} + \frac{221}{5308} a^{24} + \frac{150}{1327} a^{23} + \frac{7661}{15924} a^{22} - \frac{863}{5308} a^{21} + \frac{42}{1327} a^{20} + \frac{179}{1327} a^{19} - \frac{2267}{5308} a^{18} + \frac{527}{1327} a^{17} + \frac{2833}{15924} a^{16} + \frac{5555}{15924} a^{15} + \frac{2669}{7962} a^{14} - \frac{139}{7962} a^{13} + \frac{2499}{5308} a^{12} - \frac{1229}{3981} a^{11} - \frac{1265}{5308} a^{10} - \frac{3623}{15924} a^{9} - \frac{629}{7962} a^{8} - \frac{1207}{3981} a^{7} + \frac{2437}{15924} a^{6} + \frac{213}{1327} a^{5} - \frac{3709}{15924} a^{4} + \frac{4877}{15924} a^{3} + \frac{218}{3981} a^{2} - \frac{360}{1327} a - \frac{571}{15924}$, $\frac{1}{3869090832521490133544296838467287517574217779532} a^{29} - \frac{92043539031028047263111113082922468857235809}{3869090832521490133544296838467287517574217779532} a^{28} + \frac{38640379059093456636041442513795751380941629169}{3869090832521490133544296838467287517574217779532} a^{27} - \frac{79029585359776446170081996176167029670170738683}{3869090832521490133544296838467287517574217779532} a^{26} + \frac{5212441888098017381675057548150697130331375969}{82321081543010428373282911456750798246259952756} a^{25} - \frac{2883152875653478824799481227460899493235922801}{67878786535464739184987663832759430132881013676} a^{24} + \frac{1109116474233534907404986269997403364965913347271}{3869090832521490133544296838467287517574217779532} a^{23} + \frac{4428552355531619227748051140742153552788495931}{82321081543010428373282911456750798246259952756} a^{22} - \frac{323600749470063253149307224275669370336647783917}{3869090832521490133544296838467287517574217779532} a^{21} - \frac{825376021596774532656857203129359238781757509393}{3869090832521490133544296838467287517574217779532} a^{20} - \frac{1852441927154373754647350699047546452470964779603}{3869090832521490133544296838467287517574217779532} a^{19} - \frac{11967470536789714953925711505235870653966388091}{3869090832521490133544296838467287517574217779532} a^{18} + \frac{355425207255607608977519173516841805195013880231}{1289696944173830044514765612822429172524739259844} a^{17} + \frac{471645495872928480133592293795300093033363967315}{3869090832521490133544296838467287517574217779532} a^{16} + \frac{180969627717629152732003252594504879218857376113}{3869090832521490133544296838467287517574217779532} a^{15} - \frac{1909476460600001023917735523617824360508391228921}{3869090832521490133544296838467287517574217779532} a^{14} + \frac{1190399764331520826100696301317240245504196639381}{3869090832521490133544296838467287517574217779532} a^{13} + \frac{132866075828363708919397959449781460336170810035}{1289696944173830044514765612822429172524739259844} a^{12} + \frac{1442222685272160485657279632498093222525189838545}{3869090832521490133544296838467287517574217779532} a^{11} + \frac{1188542501466511052989125065099047742275065502363}{3869090832521490133544296838467287517574217779532} a^{10} + \frac{23106770298384115019406352688368998770555345947}{3869090832521490133544296838467287517574217779532} a^{9} + \frac{1179929787056267029675149747446909698409299023491}{3869090832521490133544296838467287517574217779532} a^{8} + \frac{580557047714259391713487157744935194854845402445}{3869090832521490133544296838467287517574217779532} a^{7} + \frac{133969176284250145518118479071339485956646293317}{3869090832521490133544296838467287517574217779532} a^{6} - \frac{848824556894322277390742114006457237918383425207}{3869090832521490133544296838467287517574217779532} a^{5} - \frac{1475196411709799153613506937316511682428663574421}{3869090832521490133544296838467287517574217779532} a^{4} - \frac{390204643696289537149344435394918385584850914835}{3869090832521490133544296838467287517574217779532} a^{3} + \frac{1738876099680233407256516163937399238086798511221}{3869090832521490133544296838467287517574217779532} a^{2} + \frac{419847097304929802612085306139750289856804894817}{1289696944173830044514765612822429172524739259844} a + \frac{9892258076365419843126106292467569429141274729}{82321081543010428373282911456750798246259952756}$, $\frac{1}{181847269128510036276581951407962513325988235638004} a^{30} - \frac{1}{90923634564255018138290975703981256662994117819002} a^{29} + \frac{3036530408135948813786142048198528084000987205}{181847269128510036276581951407962513325988235638004} a^{28} + \frac{259125359009776069315717368260704344796252367167}{30307878188085006046096991901327085554331372606334} a^{27} - \frac{21644044186969714924302636313565107120276664179}{1289696944173830044514765612822429172524739259844} a^{26} - \frac{7633896465678345086955316389040471579702905801745}{181847269128510036276581951407962513325988235638004} a^{25} + \frac{12624044282197789720528956413613956559013606847437}{181847269128510036276581951407962513325988235638004} a^{24} + \frac{97413834717645507501697726314140803950117985015}{1934545416260745066772148419233643758787108889766} a^{23} - \frac{20595452271044646041125876931354927542871043500887}{60615756376170012092193983802654171108662745212668} a^{22} - \frac{4264470396545061879411109338762717840288484767860}{45461817282127509069145487851990628331497058909501} a^{21} + \frac{83071813373246684847181811299915459046985767725177}{181847269128510036276581951407962513325988235638004} a^{20} - \frac{31120030114387772594878100991143214436536285485929}{181847269128510036276581951407962513325988235638004} a^{19} + \frac{2587397790131417927885832290130845017023489249691}{60615756376170012092193983802654171108662745212668} a^{18} + \frac{8849358450498548510425598025612164480938759161595}{90923634564255018138290975703981256662994117819002} a^{17} + \frac{56638870619591747990477686249349151198964744677157}{181847269128510036276581951407962513325988235638004} a^{16} + \frac{1828254843774712958989116939269530888700864715092}{15153939094042503023048495950663542777165686303167} a^{15} - \frac{88055693532063425478265229625318666583734243871619}{181847269128510036276581951407962513325988235638004} a^{14} + \frac{12787909703850239509980147917386203187783336450841}{181847269128510036276581951407962513325988235638004} a^{13} - \frac{4111993231465432420624414295771870146523970399077}{9570908901500528225083260600419079648736222928316} a^{12} + \frac{4150142541530093952483100454833588648963098984477}{15153939094042503023048495950663542777165686303167} a^{11} - \frac{73406217006791926106480910191663625302426463311741}{181847269128510036276581951407962513325988235638004} a^{10} - \frac{3380197369325334201471333062729485178583172289365}{90923634564255018138290975703981256662994117819002} a^{9} - \frac{16494359108944952448363630694631132966925251566447}{60615756376170012092193983802654171108662745212668} a^{8} - \frac{19775824185600293542465036748858493536246506292197}{60615756376170012092193983802654171108662745212668} a^{7} - \frac{10133814935902454546136707730437950957535149124081}{181847269128510036276581951407962513325988235638004} a^{6} + \frac{19329564347130647878594628101287258588369194879593}{90923634564255018138290975703981256662994117819002} a^{5} + \frac{11223245907117255928121390190425433024767859944765}{181847269128510036276581951407962513325988235638004} a^{4} + \frac{17784777170474088579666355021224428350171383482255}{45461817282127509069145487851990628331497058909501} a^{3} - \frac{23584451438580087757743859302000015875649932966945}{181847269128510036276581951407962513325988235638004} a^{2} - \frac{99573595430850908764384699551307506910843064927}{203636359606394217554962991498278290398643041028} a + \frac{9236314546735603728338043215998004254217802577}{20580270385752607093320727864187699561564988189}$, $\frac{1}{8546821649039971704999351716174238126321447074986188} a^{31} - \frac{1}{4273410824519985852499675858087119063160723537493094} a^{30} + \frac{23}{8546821649039971704999351716174238126321447074986188} a^{29} - \frac{11114137497670285103039010138301463307344195023}{8546821649039971704999351716174238126321447074986188} a^{28} + \frac{7427458115531816182135474513465506172904092150535}{181847269128510036276581951407962513325988235638004} a^{27} - \frac{241668999013173668043850858590927685233934274475209}{8546821649039971704999351716174238126321447074986188} a^{26} - \frac{239605794666218101198023654350031690323142642810433}{2848940549679990568333117238724746042107149024995396} a^{25} + \frac{9973388773528968899783056844147814959929439396333}{90923634564255018138290975703981256662994117819002} a^{24} - \frac{435479403246520293172899355441828284860651850333337}{2848940549679990568333117238724746042107149024995396} a^{23} - \frac{7565370360684929744525594018963519421149949450989}{2848940549679990568333117238724746042107149024995396} a^{22} - \frac{3214906277444482222368840551458863255652667972607407}{8546821649039971704999351716174238126321447074986188} a^{21} + \frac{1021145687575683084138000368515471330376101841141943}{2848940549679990568333117238724746042107149024995396} a^{20} - \frac{23814134881453831632849817424077775462777006776443}{2848940549679990568333117238724746042107149024995396} a^{19} + \frac{1132844056208410408022885133911094751123910713644509}{4273410824519985852499675858087119063160723537493094} a^{18} - \frac{2822251647351643722238104642015692228463844591984321}{8546821649039971704999351716174238126321447074986188} a^{17} + \frac{51883953563731985208203718993052597107685260294249}{2848940549679990568333117238724746042107149024995396} a^{16} - \frac{795521952130843229717809641472292659081915659908447}{8546821649039971704999351716174238126321447074986188} a^{15} + \frac{909145386180041254997074388261998896435145720543239}{2848940549679990568333117238724746042107149024995396} a^{14} - \frac{115355022424146431327832686475748497954354502395101}{8546821649039971704999351716174238126321447074986188} a^{13} - \frac{3336052539307394975246400135035815056569972790876}{712235137419997642083279309681186510526787256248849} a^{12} + \frac{3966955003610174580972002863721213901976149330833521}{8546821649039971704999351716174238126321447074986188} a^{11} - \frac{2114769478801614688687904433154438419357029236484161}{8546821649039971704999351716174238126321447074986188} a^{10} + \frac{880876767741169401636311816678851326553013935505051}{8546821649039971704999351716174238126321447074986188} a^{9} + \frac{2224776442389272332706047731082914946476559388463373}{8546821649039971704999351716174238126321447074986188} a^{8} + \frac{22126058946432241814082951355350238929539158742213}{2848940549679990568333117238724746042107149024995396} a^{7} + \frac{2103377154732772629254712005917409969893120601497241}{4273410824519985852499675858087119063160723537493094} a^{6} - \frac{1025032925955114202127428172433688536799095872925097}{8546821649039971704999351716174238126321447074986188} a^{5} - \frac{2144672042805190355110687498549496188475602236459013}{8546821649039971704999351716174238126321447074986188} a^{4} + \frac{131920904595037935009334312984520146153773762118737}{2848940549679990568333117238724746042107149024995396} a^{3} + \frac{55022219544063040486556149479900343663094405518297}{181847269128510036276581951407962513325988235638004} a^{2} + \frac{322585279036757768224635601672323241839228083987}{1934545416260745066772148419233643758787108889766} a + \frac{652694732329466443406553943324344740526629093}{6860090128584202364440242621395899853854996063}$
Class group and class number
$C_{2}\times C_{30}\times C_{390}$, which has order $23400$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2412836301769834464693654844934538307784}{34259093656463835018195544726443578245287911763} a^{31} + \frac{3534789586758950679357578635029562212886}{34259093656463835018195544726443578245287911763} a^{30} - \frac{17281625508224372513426609761189567904548}{11419697885487945006065181575481192748429303921} a^{29} + \frac{36072593397114889522517699620614147114410}{11419697885487945006065181575481192748429303921} a^{28} - \frac{921289752283894751998262560355301735902444}{34259093656463835018195544726443578245287911763} a^{27} - \frac{2829719752257010214986945976343721795388}{34259093656463835018195544726443578245287911763} a^{26} - \frac{12484717849282191734125413962272088608813136}{34259093656463835018195544726443578245287911763} a^{25} - \frac{702928987895863622669988221072203423473172}{11419697885487945006065181575481192748429303921} a^{24} - \frac{174579407953565890617839683028889978127156148}{34259093656463835018195544726443578245287911763} a^{23} + \frac{21615096801268401955928116567199540916636682}{11419697885487945006065181575481192748429303921} a^{22} - \frac{842785263906959815967825248497988585014955792}{34259093656463835018195544726443578245287911763} a^{21} + \frac{136523536334147719689826848026605478381714512}{11419697885487945006065181575481192748429303921} a^{20} - \frac{3391455008910940310958993838719536805231154732}{34259093656463835018195544726443578245287911763} a^{19} + \frac{245721626448025289854597139911770894362367364}{34259093656463835018195544726443578245287911763} a^{18} - \frac{11178423124612665168993584791011096706331496380}{34259093656463835018195544726443578245287911763} a^{17} + \frac{76096713863333294358339162871306666987268086}{34259093656463835018195544726443578245287911763} a^{16} - \frac{32689579695191580743386326760523133758665307188}{34259093656463835018195544726443578245287911763} a^{15} + \frac{1706314406619317550098934834292309218032862820}{34259093656463835018195544726443578245287911763} a^{14} - \frac{19389480336617826890768254303629828056904949196}{11419697885487945006065181575481192748429303921} a^{13} - \frac{12951261416726362187739358340054515987520350019}{34259093656463835018195544726443578245287911763} a^{12} - \frac{94407087177905495696043093619223946807172969676}{34259093656463835018195544726443578245287911763} a^{11} - \frac{32223676449386807110128753783499858318566616854}{11419697885487945006065181575481192748429303921} a^{10} - \frac{32248470534152895228240032147394112274867488944}{11419697885487945006065181575481192748429303921} a^{9} - \frac{108894387817601865491086232993855989919113916204}{34259093656463835018195544726443578245287911763} a^{8} - \frac{1579987049879936871264450910007268451758965632}{601036730815155000319220082920062776233121259} a^{7} - \frac{122056341199539259338596768742192757199635881292}{34259093656463835018195544726443578245287911763} a^{6} - \frac{104877102608122180757462434759535787287145891028}{34259093656463835018195544726443578245287911763} a^{5} - \frac{118048860539876063735112953313839853787246534034}{34259093656463835018195544726443578245287911763} a^{4} - \frac{1477728100988733003920268796328003803270796096}{728916886307741170599905206945608047772083229} a^{3} - \frac{42365466226384496591038812531731399632381086188}{11419697885487945006065181575481192748429303921} a^{2} - \frac{2895422874965665085531888526092068961078332}{5169623307147100500708547566990127998383569} a - \frac{1347817673779536235662564805657761170102778}{5169623307147100500708547566990127998383569} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29176878483384.797 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||