Normalized defining polynomial
\( x^{32} + 24 x^{30} + 396 x^{28} + 5616 x^{26} + 73710 x^{24} + 680400 x^{22} + 5423760 x^{20} + 38631168 x^{18} + 232863012 x^{16} + 867941568 x^{14} + 2949615648 x^{12} + 8899865280 x^{10} + 19892899512 x^{8} + 9081263808 x^{6} + 4132485216 x^{4} + 1836660096 x^{2} + 688747536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54568201713507127370225565301626372096000000000000000000000000=2^{124}\cdot 3^{16}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(131,·)$, $\chi_{480}(11,·)$, $\chi_{480}(409,·)$, $\chi_{480}(289,·)$, $\chi_{480}(419,·)$, $\chi_{480}(49,·)$, $\chi_{480}(169,·)$, $\chi_{480}(299,·)$, $\chi_{480}(433,·)$, $\chi_{480}(179,·)$, $\chi_{480}(73,·)$, $\chi_{480}(371,·)$, $\chi_{480}(313,·)$, $\chi_{480}(59,·)$, $\chi_{480}(193,·)$, $\chi_{480}(323,·)$, $\chi_{480}(457,·)$, $\chi_{480}(203,·)$, $\chi_{480}(337,·)$, $\chi_{480}(467,·)$, $\chi_{480}(217,·)$, $\chi_{480}(347,·)$, $\chi_{480}(97,·)$, $\chi_{480}(227,·)$, $\chi_{480}(361,·)$, $\chi_{480}(107,·)$, $\chi_{480}(241,·)$, $\chi_{480}(83,·)$, $\chi_{480}(121,·)$, $\chi_{480}(251,·)$, $\chi_{480}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{162} a^{8}$, $\frac{1}{162} a^{9}$, $\frac{1}{486} a^{10}$, $\frac{1}{486} a^{11}$, $\frac{1}{1458} a^{12}$, $\frac{1}{1458} a^{13}$, $\frac{1}{4374} a^{14}$, $\frac{1}{4374} a^{15}$, $\frac{1}{26244} a^{16}$, $\frac{1}{26244} a^{17}$, $\frac{1}{2440692} a^{18} - \frac{5}{271188} a^{16} + \frac{2}{67797} a^{14} + \frac{1}{22599} a^{12} + \frac{1}{15066} a^{10} + \frac{13}{5022} a^{8} + \frac{11}{837} a^{6} - \frac{10}{279} a^{4} - \frac{5}{93} a^{2} + \frac{13}{31}$, $\frac{1}{2440692} a^{19} - \frac{5}{271188} a^{17} + \frac{2}{67797} a^{15} + \frac{1}{22599} a^{13} + \frac{1}{15066} a^{11} + \frac{13}{5022} a^{9} + \frac{11}{837} a^{7} - \frac{10}{279} a^{5} - \frac{5}{93} a^{3} + \frac{13}{31} a$, $\frac{1}{7322076} a^{20} - \frac{1}{5022} a^{10} + \frac{9}{31}$, $\frac{1}{7322076} a^{21} - \frac{1}{5022} a^{11} + \frac{9}{31} a$, $\frac{1}{21966228} a^{22} - \frac{1}{15066} a^{12} + \frac{3}{31} a^{2}$, $\frac{1}{21966228} a^{23} - \frac{1}{15066} a^{13} + \frac{3}{31} a^{3}$, $\frac{1}{131797368} a^{24} + \frac{7}{67797} a^{14} - \frac{11}{279} a^{4}$, $\frac{1}{131797368} a^{25} + \frac{7}{67797} a^{15} - \frac{11}{279} a^{5}$, $\frac{1}{163198486318104} a^{26} - \frac{3173}{877411216764} a^{24} + \frac{85069}{9066582573228} a^{22} + \frac{85657}{1511097095538} a^{20} + \frac{26513}{167899677282} a^{18} - \frac{411907}{335799354564} a^{16} - \frac{191051}{18655519698} a^{14} + \frac{31366}{9327759849} a^{12} + \frac{1048273}{2072835522} a^{10} - \frac{3841175}{2072835522} a^{8} - \frac{5143468}{345472587} a^{6} - \frac{3127171}{115157529} a^{4} - \frac{1006672}{38385843} a^{2} + \frac{4928301}{12795281}$, $\frac{1}{163198486318104} a^{27} - \frac{3173}{877411216764} a^{25} + \frac{85069}{9066582573228} a^{23} + \frac{85657}{1511097095538} a^{21} + \frac{26513}{167899677282} a^{19} - \frac{411907}{335799354564} a^{17} - \frac{191051}{18655519698} a^{15} + \frac{31366}{9327759849} a^{13} + \frac{1048273}{2072835522} a^{11} - \frac{3841175}{2072835522} a^{9} - \frac{5143468}{345472587} a^{7} - \frac{3127171}{115157529} a^{5} - \frac{1006672}{38385843} a^{3} + \frac{4928301}{12795281} a$, $\frac{1}{15177459227583672} a^{28} - \frac{5}{1686384358620408} a^{26} - \frac{1353545}{1686384358620408} a^{24} + \frac{690515}{46844009961678} a^{22} - \frac{4501075}{93688019923356} a^{20} - \frac{1974767}{31229339974452} a^{18} + \frac{44767237}{10409779991484} a^{16} + \frac{122974903}{1734963331914} a^{14} + \frac{3698195}{96386851773} a^{12} - \frac{181713821}{192773703546} a^{10} - \frac{35684806}{32128950591} a^{8} - \frac{174213533}{10709650197} a^{6} - \frac{10076623}{396653711} a^{4} - \frac{125886043}{1189961133} a^{2} + \frac{9949030}{396653711}$, $\frac{1}{15177459227583672} a^{29} - \frac{5}{1686384358620408} a^{27} - \frac{1353545}{1686384358620408} a^{25} + \frac{690515}{46844009961678} a^{23} - \frac{4501075}{93688019923356} a^{21} - \frac{1974767}{31229339974452} a^{19} + \frac{44767237}{10409779991484} a^{17} + \frac{122974903}{1734963331914} a^{15} + \frac{3698195}{96386851773} a^{13} - \frac{181713821}{192773703546} a^{11} - \frac{35684806}{32128950591} a^{9} - \frac{174213533}{10709650197} a^{7} - \frac{10076623}{396653711} a^{5} - \frac{125886043}{1189961133} a^{3} + \frac{9949030}{396653711} a$, $\frac{1}{45532377682751016} a^{30} - \frac{57208}{23422004980839} a^{20} - \frac{6083452}{10709650197} a^{10} + \frac{130294233}{396653711}$, $\frac{1}{45532377682751016} a^{31} - \frac{57208}{23422004980839} a^{21} - \frac{6083452}{10709650197} a^{11} + \frac{130294233}{396653711} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7546805}{11383094420687754} a^{30} + \frac{4472023}{281064059770068} a^{28} + \frac{166029710}{632394134482653} a^{26} + \frac{784867720}{210798044827551} a^{24} + \frac{3433796275}{70266014942517} a^{22} + \frac{10565527000}{23422004980839} a^{20} + \frac{9358397222}{2602444997871} a^{18} + \frac{22217793920}{867481665957} a^{16} + \frac{133925601530}{867481665957} a^{14} + \frac{166391956640}{289160555319} a^{12} + \frac{188489001680}{96386851773} a^{10} + \frac{378845991847}{64257901182} a^{8} + \frac{141246002380}{10709650197} a^{6} + \frac{21493300640}{3569883399} a^{4} + \frac{1086739920}{396653711} a^{2} + \frac{482995520}{396653711} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||