Normalized defining polynomial
\( x^{32} - x^{31} + 4 x^{30} - 7 x^{29} + 19 x^{28} - 40 x^{27} + 97 x^{26} - 217 x^{25} + 508 x^{24} - 1159 x^{23} + 2683 x^{22} - 6160 x^{21} + 14209 x^{20} - 32689 x^{19} + 75316 x^{18} - 173383 x^{17} + 399331 x^{16} + 520149 x^{15} + 677844 x^{14} + 882603 x^{13} + 1150929 x^{12} + 1496880 x^{11} + 1955907 x^{10} + 2534733 x^{9} + 3332988 x^{8} + 4271211 x^{7} + 5727753 x^{6} + 7085880 x^{5} + 10097379 x^{4} + 11160261 x^{3} + 19131876 x^{2} + 14348907 x + 43046721 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1197993} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{173383}{399331}$, $\frac{1}{3593979} a^{18} - \frac{1}{3593979} a^{17} + \frac{4}{9} a^{16} + \frac{2}{9} a^{15} + \frac{1}{9} a^{14} - \frac{4}{9} a^{13} - \frac{2}{9} a^{12} - \frac{1}{9} a^{11} + \frac{4}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{173383}{1197993} a + \frac{75316}{399331}$, $\frac{1}{10781937} a^{19} - \frac{1}{10781937} a^{18} + \frac{4}{10781937} a^{17} - \frac{7}{27} a^{16} - \frac{8}{27} a^{15} - \frac{13}{27} a^{14} - \frac{11}{27} a^{13} - \frac{1}{27} a^{12} - \frac{5}{27} a^{11} + \frac{2}{27} a^{10} + \frac{10}{27} a^{9} - \frac{4}{27} a^{8} + \frac{7}{27} a^{7} + \frac{8}{27} a^{6} + \frac{13}{27} a^{5} + \frac{11}{27} a^{4} + \frac{1}{27} a^{3} + \frac{173383}{3593979} a^{2} + \frac{75316}{1197993} a + \frac{32689}{399331}$, $\frac{1}{32345811} a^{20} - \frac{1}{32345811} a^{19} + \frac{4}{32345811} a^{18} - \frac{7}{32345811} a^{17} + \frac{19}{81} a^{16} - \frac{40}{81} a^{15} + \frac{16}{81} a^{14} + \frac{26}{81} a^{13} + \frac{22}{81} a^{12} - \frac{25}{81} a^{11} + \frac{10}{81} a^{10} - \frac{4}{81} a^{9} + \frac{34}{81} a^{8} + \frac{35}{81} a^{7} - \frac{14}{81} a^{6} + \frac{38}{81} a^{5} + \frac{1}{81} a^{4} + \frac{173383}{10781937} a^{3} + \frac{75316}{3593979} a^{2} + \frac{32689}{1197993} a + \frac{14209}{399331}$, $\frac{1}{97037433} a^{21} - \frac{1}{97037433} a^{20} + \frac{4}{97037433} a^{19} - \frac{7}{97037433} a^{18} + \frac{19}{97037433} a^{17} + \frac{41}{243} a^{16} + \frac{16}{243} a^{15} + \frac{107}{243} a^{14} - \frac{59}{243} a^{13} - \frac{106}{243} a^{12} - \frac{71}{243} a^{11} - \frac{4}{243} a^{10} + \frac{34}{243} a^{9} - \frac{46}{243} a^{8} - \frac{95}{243} a^{7} - \frac{43}{243} a^{6} + \frac{1}{243} a^{5} + \frac{173383}{32345811} a^{4} + \frac{75316}{10781937} a^{3} + \frac{32689}{3593979} a^{2} + \frac{14209}{1197993} a + \frac{6160}{399331}$, $\frac{1}{291112299} a^{22} - \frac{1}{291112299} a^{21} + \frac{4}{291112299} a^{20} - \frac{7}{291112299} a^{19} + \frac{19}{291112299} a^{18} - \frac{40}{291112299} a^{17} - \frac{227}{729} a^{16} + \frac{350}{729} a^{15} - \frac{302}{729} a^{14} - \frac{106}{729} a^{13} - \frac{71}{729} a^{12} - \frac{247}{729} a^{11} + \frac{34}{729} a^{10} - \frac{46}{729} a^{9} + \frac{148}{729} a^{8} - \frac{286}{729} a^{7} + \frac{1}{729} a^{6} + \frac{173383}{97037433} a^{5} + \frac{75316}{32345811} a^{4} + \frac{32689}{10781937} a^{3} + \frac{14209}{3593979} a^{2} + \frac{6160}{1197993} a + \frac{2683}{399331}$, $\frac{1}{873336897} a^{23} - \frac{1}{873336897} a^{22} + \frac{4}{873336897} a^{21} - \frac{7}{873336897} a^{20} + \frac{19}{873336897} a^{19} - \frac{40}{873336897} a^{18} + \frac{97}{873336897} a^{17} + \frac{1079}{2187} a^{16} + \frac{427}{2187} a^{15} + \frac{623}{2187} a^{14} + \frac{658}{2187} a^{13} - \frac{976}{2187} a^{12} + \frac{763}{2187} a^{11} + \frac{683}{2187} a^{10} - \frac{581}{2187} a^{9} + \frac{443}{2187} a^{8} + \frac{1}{2187} a^{7} + \frac{173383}{291112299} a^{6} + \frac{75316}{97037433} a^{5} + \frac{32689}{32345811} a^{4} + \frac{14209}{10781937} a^{3} + \frac{6160}{3593979} a^{2} + \frac{2683}{1197993} a + \frac{1159}{399331}$, $\frac{1}{2620010691} a^{24} - \frac{1}{2620010691} a^{23} + \frac{4}{2620010691} a^{22} - \frac{7}{2620010691} a^{21} + \frac{19}{2620010691} a^{20} - \frac{40}{2620010691} a^{19} + \frac{97}{2620010691} a^{18} - \frac{217}{2620010691} a^{17} + \frac{427}{6561} a^{16} + \frac{2810}{6561} a^{15} - \frac{1529}{6561} a^{14} - \frac{3163}{6561} a^{13} - \frac{1424}{6561} a^{12} - \frac{1504}{6561} a^{11} - \frac{2768}{6561} a^{10} - \frac{1744}{6561} a^{9} + \frac{1}{6561} a^{8} + \frac{173383}{873336897} a^{7} + \frac{75316}{291112299} a^{6} + \frac{32689}{97037433} a^{5} + \frac{14209}{32345811} a^{4} + \frac{6160}{10781937} a^{3} + \frac{2683}{3593979} a^{2} + \frac{1159}{1197993} a + \frac{508}{399331}$, $\frac{1}{7860032073} a^{25} - \frac{1}{7860032073} a^{24} + \frac{4}{7860032073} a^{23} - \frac{7}{7860032073} a^{22} + \frac{19}{7860032073} a^{21} - \frac{40}{7860032073} a^{20} + \frac{97}{7860032073} a^{19} - \frac{217}{7860032073} a^{18} + \frac{508}{7860032073} a^{17} + \frac{9371}{19683} a^{16} - \frac{8090}{19683} a^{15} - \frac{3163}{19683} a^{14} - \frac{1424}{19683} a^{13} - \frac{8065}{19683} a^{12} + \frac{3793}{19683} a^{11} - \frac{8305}{19683} a^{10} + \frac{1}{19683} a^{9} + \frac{173383}{2620010691} a^{8} + \frac{75316}{873336897} a^{7} + \frac{32689}{291112299} a^{6} + \frac{14209}{97037433} a^{5} + \frac{6160}{32345811} a^{4} + \frac{2683}{10781937} a^{3} + \frac{1159}{3593979} a^{2} + \frac{508}{1197993} a + \frac{217}{399331}$, $\frac{1}{23580096219} a^{26} - \frac{1}{23580096219} a^{25} + \frac{4}{23580096219} a^{24} - \frac{7}{23580096219} a^{23} + \frac{19}{23580096219} a^{22} - \frac{40}{23580096219} a^{21} + \frac{97}{23580096219} a^{20} - \frac{217}{23580096219} a^{19} + \frac{508}{23580096219} a^{18} - \frac{1159}{23580096219} a^{17} + \frac{11593}{59049} a^{16} + \frac{16520}{59049} a^{15} + \frac{18259}{59049} a^{14} - \frac{27748}{59049} a^{13} + \frac{23476}{59049} a^{12} + \frac{11378}{59049} a^{11} + \frac{1}{59049} a^{10} + \frac{173383}{7860032073} a^{9} + \frac{75316}{2620010691} a^{8} + \frac{32689}{873336897} a^{7} + \frac{14209}{291112299} a^{6} + \frac{6160}{97037433} a^{5} + \frac{2683}{32345811} a^{4} + \frac{1159}{10781937} a^{3} + \frac{508}{3593979} a^{2} + \frac{217}{1197993} a + \frac{97}{399331}$, $\frac{1}{70740288657} a^{27} - \frac{1}{70740288657} a^{26} + \frac{4}{70740288657} a^{25} - \frac{7}{70740288657} a^{24} + \frac{19}{70740288657} a^{23} - \frac{40}{70740288657} a^{22} + \frac{97}{70740288657} a^{21} - \frac{217}{70740288657} a^{20} + \frac{508}{70740288657} a^{19} - \frac{1159}{70740288657} a^{18} + \frac{2683}{70740288657} a^{17} + \frac{16520}{177147} a^{16} + \frac{18259}{177147} a^{15} + \frac{31301}{177147} a^{14} + \frac{23476}{177147} a^{13} + \frac{70427}{177147} a^{12} + \frac{1}{177147} a^{11} + \frac{173383}{23580096219} a^{10} + \frac{75316}{7860032073} a^{9} + \frac{32689}{2620010691} a^{8} + \frac{14209}{873336897} a^{7} + \frac{6160}{291112299} a^{6} + \frac{2683}{97037433} a^{5} + \frac{1159}{32345811} a^{4} + \frac{508}{10781937} a^{3} + \frac{217}{3593979} a^{2} + \frac{97}{1197993} a + \frac{40}{399331}$, $\frac{1}{212220865971} a^{28} - \frac{1}{212220865971} a^{27} + \frac{4}{212220865971} a^{26} - \frac{7}{212220865971} a^{25} + \frac{19}{212220865971} a^{24} - \frac{40}{212220865971} a^{23} + \frac{97}{212220865971} a^{22} - \frac{217}{212220865971} a^{21} + \frac{508}{212220865971} a^{20} - \frac{1159}{212220865971} a^{19} + \frac{2683}{212220865971} a^{18} - \frac{6160}{212220865971} a^{17} + \frac{18259}{531441} a^{16} + \frac{31301}{531441} a^{15} + \frac{23476}{531441} a^{14} + \frac{70427}{531441} a^{13} + \frac{1}{531441} a^{12} + \frac{173383}{70740288657} a^{11} + \frac{75316}{23580096219} a^{10} + \frac{32689}{7860032073} a^{9} + \frac{14209}{2620010691} a^{8} + \frac{6160}{873336897} a^{7} + \frac{2683}{291112299} a^{6} + \frac{1159}{97037433} a^{5} + \frac{508}{32345811} a^{4} + \frac{217}{10781937} a^{3} + \frac{97}{3593979} a^{2} + \frac{40}{1197993} a + \frac{19}{399331}$, $\frac{1}{636662597913} a^{29} - \frac{1}{636662597913} a^{28} + \frac{4}{636662597913} a^{27} - \frac{7}{636662597913} a^{26} + \frac{19}{636662597913} a^{25} - \frac{40}{636662597913} a^{24} + \frac{97}{636662597913} a^{23} - \frac{217}{636662597913} a^{22} + \frac{508}{636662597913} a^{21} - \frac{1159}{636662597913} a^{20} + \frac{2683}{636662597913} a^{19} - \frac{6160}{636662597913} a^{18} + \frac{14209}{636662597913} a^{17} + \frac{31301}{1594323} a^{16} + \frac{23476}{1594323} a^{15} + \frac{70427}{1594323} a^{14} + \frac{1}{1594323} a^{13} + \frac{173383}{212220865971} a^{12} + \frac{75316}{70740288657} a^{11} + \frac{32689}{23580096219} a^{10} + \frac{14209}{7860032073} a^{9} + \frac{6160}{2620010691} a^{8} + \frac{2683}{873336897} a^{7} + \frac{1159}{291112299} a^{6} + \frac{508}{97037433} a^{5} + \frac{217}{32345811} a^{4} + \frac{97}{10781937} a^{3} + \frac{40}{3593979} a^{2} + \frac{19}{1197993} a + \frac{7}{399331}$, $\frac{1}{1909987793739} a^{30} - \frac{1}{1909987793739} a^{29} + \frac{4}{1909987793739} a^{28} - \frac{7}{1909987793739} a^{27} + \frac{19}{1909987793739} a^{26} - \frac{40}{1909987793739} a^{25} + \frac{97}{1909987793739} a^{24} - \frac{217}{1909987793739} a^{23} + \frac{508}{1909987793739} a^{22} - \frac{1159}{1909987793739} a^{21} + \frac{2683}{1909987793739} a^{20} - \frac{6160}{1909987793739} a^{19} + \frac{14209}{1909987793739} a^{18} - \frac{32689}{1909987793739} a^{17} + \frac{23476}{4782969} a^{16} + \frac{70427}{4782969} a^{15} + \frac{1}{4782969} a^{14} + \frac{173383}{636662597913} a^{13} + \frac{75316}{212220865971} a^{12} + \frac{32689}{70740288657} a^{11} + \frac{14209}{23580096219} a^{10} + \frac{6160}{7860032073} a^{9} + \frac{2683}{2620010691} a^{8} + \frac{1159}{873336897} a^{7} + \frac{508}{291112299} a^{6} + \frac{217}{97037433} a^{5} + \frac{97}{32345811} a^{4} + \frac{40}{10781937} a^{3} + \frac{19}{3593979} a^{2} + \frac{7}{1197993} a + \frac{4}{399331}$, $\frac{1}{5729963381217} a^{31} - \frac{1}{5729963381217} a^{30} + \frac{4}{5729963381217} a^{29} - \frac{7}{5729963381217} a^{28} + \frac{19}{5729963381217} a^{27} - \frac{40}{5729963381217} a^{26} + \frac{97}{5729963381217} a^{25} - \frac{217}{5729963381217} a^{24} + \frac{508}{5729963381217} a^{23} - \frac{1159}{5729963381217} a^{22} + \frac{2683}{5729963381217} a^{21} - \frac{6160}{5729963381217} a^{20} + \frac{14209}{5729963381217} a^{19} - \frac{32689}{5729963381217} a^{18} + \frac{75316}{5729963381217} a^{17} + \frac{70427}{14348907} a^{16} + \frac{1}{14348907} a^{15} + \frac{173383}{1909987793739} a^{14} + \frac{75316}{636662597913} a^{13} + \frac{32689}{212220865971} a^{12} + \frac{14209}{70740288657} a^{11} + \frac{6160}{23580096219} a^{10} + \frac{2683}{7860032073} a^{9} + \frac{1159}{2620010691} a^{8} + \frac{508}{873336897} a^{7} + \frac{217}{291112299} a^{6} + \frac{97}{97037433} a^{5} + \frac{40}{32345811} a^{4} + \frac{19}{10781937} a^{3} + \frac{7}{3593979} a^{2} + \frac{4}{1197993} a + \frac{1}{399331}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{508}{7860032073} a^{26} - \frac{727060321}{7860032073} a^{9} \) (order $34$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17 | Data not computed | ||||||